Power diode switched RL load

Diode Switched RL Load:

\[\begin{aligned} V_s & = v_L + v_R = L \dfrac{di}{dt}+Ri \\ \text{Solution} ~i(t) & = \dfrac{V_s}{R} (1-e^{-tR/L}) \qquad i(t=0)=0\\ \dfrac{di}{dt} & = \dfrac{V_s}{L}e^{-tR/L}\\ \left.\dfrac{di}{dt}\right|_{t=0} & = \dfrac{V_s}{L}\\ v_L(t) & = L\dfrac{di}{dt} = V_s e^{-tR/L} \end{aligned}\]

image

Solved Problem:

A diode \(RL\) circuit with \(V_{S}= 220V, R= 4\Omega,\) and \(L= 5\) mH.The inductor has no initial current. If switch is closed at \(t= 0\), determine

  1. The steady-state diode current \[I_P=\frac{V_S}{R}=\frac{220}{4}=55\mathrm{A}\]

  2. The energy stored in the inductor \(L\) \[W=0.5\mathrm{LI}_{\mathrm{P}}^{2}=0.5\times5\times10^{-3} \times 55^{2}=7.563\mathrm{mJ}\]

  3. The initial \(di/dt\) \[\frac{di}{dt}=\frac{V_S}{L}=\frac{220}{5\times10^{-3}}=44\text{A/ms}\]

  4. The inductor current at \(t=1~\mathrm{ms}\) \[i(t=1\mathrm{ms})=\frac{V_S}{R}\left(1-e^{-tR/L}\right)=\frac{220}{4}\times\left(1-e^{-1/1.25}\right)=30.287\mathrm{A}\]