Power diode switched RC load

Diode Switched RC Load:

\[\begin{aligned} & V_s=v_R+v_c=v_R+\frac{1}{C} \int_{t_0}^t i d t+v_c(t=0) \\ & v_R=R i \end{aligned}\]

With initial condition \(v_c(t=0)=0\), gives the charging current \(i\) as \[i(t)=\frac{V_s}{R} e^{-t / R C}\]


Problem:

A diode circuit with \(R=44 \Omega\) and \(C=0.1 \mu \mathrm{F}\) load has initial capacitor voltage, \(V_{c 0}=V_c(t=0)=220 \mathrm{~V}\). If switch \(S_1\) is closed at \(t=0\), determine

  1. the peak diode current

  2. the energy dissipated in the resistor \(R\)

  3. the capacitor voltage at \(t=2 \mu \mathrm{s}\).

image

Solution:

  1. The peak diode current \(I_p\) is \[I_P=\frac{V_{c 0}}{R}=\frac{220}{44}=5 \mathrm{~A}\]

  2. The energy \(W\) dissipated is \[W=0.5 C V_{c 0}^2=0.5 \times 0.1 \times 10^{-6} \times 220^2=0.00242 \mathrm{~J}=2.42 \mathrm{~mJ}\]

  3. For \(R C=44 \times 0.1 \mu=4.4 \mu \mathrm{s}\) and \(t=t_1=2 \mu \mathrm{s}\), the capacitor voltage is \[v_c(t=2 \mu \mathrm{s})=V_{c 0} e^{-t / R C}=220 \times e^{-2 / 4.4}=139.64 \mathrm{~V}\]