Power diode switched LC load

Diode Switched LC Load:

image

\[\begin{aligned} V_s & =L\frac{di}{dt}+\frac{1}{C}\int_{t_0}^tidt+v_c(t=0) \\ &\text{With initial conditions }i(t=0)=0~\mathrm{and}~v_{c}(t=0)=0 \\ i\left(t\right)&=V_{s}\sqrt{\frac{C}{L}}\sin\omega_{0}t\\ &=I_{p}\sin\omega_{0}t \qquad \omega_0 = 1/\sqrt{LC}\\ \end{aligned}\]

\[\begin{aligned} I_p & =V_s\sqrt{\frac{c}{L}}\\ \frac{di}{dt} & =\frac{V_s}{L}\cos\omega_0t \\ \left.\frac{di}{dt}\right|_{t=0} & =\frac{V_s}{L} \\ v_c(t) & =\frac{1}{C}\int_0^tidt=V_s(1-\cos\omega_0t)\\ \end{aligned}\] At \(t=t_1=\pi\sqrt{LC}\) the diode current \(i\) falls to zero and the capacitor is charged to 2\(V_s\).


Solved Problem:

A diode circuit with an \(LC\) load has initial capacitor voltage,\(V_c(t=0)=-V_{c0}=V_0-220V;\) capacitance, \(C=20~ \mu F\); and inductance, \(L=80~\mu H\). If switch \(S_{1}\) is closed at \(t=0\), determine

  1. the peak current through the diode,

    \[\begin{aligned} &L\frac{di}{dt}+\frac{1}{C}\int_{t_{0}}^{t}idt+v_{c}(t=0)=0 \\ &i(t)=V_{c0}\sqrt{\frac{C}{L}}\sin\omega_{0}t \\ &\omega_{0}=1/\sqrt{LC}=10^{6}/\sqrt{20\times80}=25{,}000\mathrm{rad/s}. \\ &I_{p}=V_{c0}\sqrt{\frac{C}{L}}=220\sqrt{\frac{20}{80}}=110\mathrm{A} \end{aligned}\]

  2. the conduction time of the diode \[t_1=\pi\sqrt{LC}=\pi\sqrt{20\times80}=125.66\mu s\]

  3. the final steady-state capacitor voltage.

    \[\begin{aligned} v_{c}(t) &=\frac{1}{C}\int_{0}^{t}idt-V_{c0}=-V_{c0}\cos\omega_{0}t\\ \mathrm{For}~t &=t_{1}=125.66\mathrm{\mu s},v_{c}(t=t_{1})\\ &=-220\cos\pi=220\mathrm{V}. \end{aligned}\]