Consider the one-sided derivative at a point \( x^* \):
\[ \lim_{h \to 0} \frac{f(x^* + h) - f(x^*)}{h} = m^+ \text{ (positive) or } m^- \text{ (negative)} \]
If \( f \) is differentiable at \( x^* \) and \( x^* \) is an extremum, then \( f'(x^*) = 0 \).
If \( f'(x^*) = 0 \) and:
Let \( f'(x^*) = f''(x^*) = \cdots = f^{(n-1)}(x^*) = 0 \), but \( f^{(n)}(x^*) \neq 0 \). Then:
Find and classify all extrema of \( f(x) = 12x^5 - 45x^4 + 40x^3 + 5 \).