Minimize \( f(\mathbf{x}) \), \( \mathbf{x} \in \mathbb{R}^n \), subject to \( g_j(\mathbf{x}) = 0 \), \( j=1,\ldots,m \) (equality constraints) or \( g_j(\mathbf{x}) \leq 0 \) (inequality constraints).
Minimize \( f(x, y) = x^2 + y^2 \) subject to \( x + y = 1 \):
Minimize \( f(x, y) = x^2 + y^2 \) subject to \( x + y = 1 \):
Use Direct Substitution when possible; resort to Constrained Variation for complex constraints.
Minimize \( f(\mathbf{x}) \), \( \mathbf{x} \in \mathbb{R}^n \), subject to \( g_j(\mathbf{x}) = 0 \), \( j=1,\ldots,m \).
\[ \mathcal{L}(\mathbf{x}, \mathbf{\lambda}) = f(\mathbf{x}) + \sum_{j=1}^m \lambda_j g_j(\mathbf{x}) \]
where \( \mathbf{\lambda} = (\lambda_1, \ldots, \lambda_m) \) are Lagrange multipliers.
At a critical point:
\[ \begin{aligned} \nabla_{\mathbf{x}} \mathcal{L} & = \frac{\partial \mathcal{L}}{\partial x_i} = 0 \quad (i=1,\ldots,n) \\ \frac{\partial \mathcal{L}}{\partial \lambda_j} & = g_j(\mathbf{x}) = 0 \quad (j=1,\ldots,m) \end{aligned} \]
At the optimum, \( \nabla f = -\sum_{j=1}^m \lambda_j \nabla g_j \), meaning gradient alignment of \( f \) with constraint gradients.
Minimize \( f(x, y) = x^2 + y^2 \) subject to \( g(x, y) = x + y - 1 = 0 \).
\[ \begin{aligned} \frac{\partial \mathcal{L}}{\partial x} &= 2x + \lambda = 0 \\ \frac{\partial \mathcal{L}}{\partial y} &= 2y + \lambda = 0 \\ \frac{\partial \mathcal{L}}{\partial \lambda} &= x + y - 1 = 0 \end{aligned} \]
Minimize \( f(\mathbf{x}) \), \( \mathbf{x} \in \mathbb{R}^n \), subject to \( g_j(\mathbf{x}) \leq 0 \), \( j=1,\ldots,m \).
Form Lagrangian: \( \mathcal{L}(\mathbf{x}, \mathbf{\lambda}) = f(\mathbf{x}) + \sum_{j=1}^m \lambda_j g_j(\mathbf{x}) \).
Necessary conditions:
Minimize \( f(x, y) = x^2 + y^2 \) subject to \( x + y \leq 1 \).
Minimize \( f(x, y) = (x-1)^2 + (y-2)^2 \) subject to:
\[ \begin{aligned} x + y & \leq 2 \\ y & \geq x \end{aligned} \]
\[ \begin{aligned} 2(x-1) + \lambda_1 + \lambda_2 &= 0 \\ 2(y-2) + \lambda_1 - \lambda_2 &= 0 \\ \lambda_1 (x + y - 2) &= 0 \\ \lambda_2 (x - y) &= 0 \\ \lambda_1, \lambda_2 & \geq 0 \end{aligned} \]