Minimize f(x), x∈Rn, subject to gj(x)=0, j=1,…,m (equality constraints) or gj(x)≤0 (inequality constraints).
Minimize f(x,y)=x2+y2 subject to x+y=1:
Minimize f(x,y)=x2+y2 subject to x+y=1:
Use Direct Substitution when possible; resort to Constrained Variation for complex constraints.
Minimize f(x), x∈Rn, subject to gj(x)=0, j=1,…,m.
L(x,λ)=f(x)+m∑j=1λjgj(x)
where λ=(λ1,…,λm) are Lagrange multipliers.
At a critical point:
∇xL=∂L∂xi=0(i=1,…,n)∂L∂λj=gj(x)=0(j=1,…,m)
At the optimum, ∇f=−∑mj=1λj∇gj, meaning gradient alignment of f with constraint gradients.
Minimize f(x,y)=x2+y2 subject to g(x,y)=x+y−1=0.
∂L∂x=2x+λ=0∂L∂y=2y+λ=0∂L∂λ=x+y−1=0
Minimize f(x), x∈Rn, subject to gj(x)≤0, j=1,…,m.
Form Lagrangian: L(x,λ)=f(x)+∑mj=1λjgj(x).
Necessary conditions:
Minimize f(x,y)=x2+y2 subject to x+y≤1.
Minimize f(x,y)=(x−1)2+(y−2)2 subject to:
x+y≤2y≥x
2(x−1)+λ1+λ2=02(y−2)+λ1−λ2=0λ1(x+y−2)=0λ2(x−y)=0λ1,λ2≥0