GATE EE Engineering Mathematics 2016 Set-1 Solved Paper

Question 1

In a quadratic function, the value of the product of the roots \((\alpha, \beta)\) is \(4\). Find the value of \[\frac{\alpha^{n} + \beta^{n}}{\alpha^{-n} + \beta^{-n}}.\]

Options:

  1. \(n^4\)

  2. \(4^n\)

  3. \(2^{2n-1}\)

  4. \(4^{n-1}\)

Solution

\[\frac{\alpha^{n} + \beta^{n}} {\alpha^{-n} + \beta^{-n}} = \frac{\alpha^{n} + \beta^{n}} {\frac{1}{\alpha^{n}} + \frac{1}{\beta^{n}}}\]

\[= \frac{\alpha^{n}\beta^{n}(\alpha^{n} + \beta^{n})} {\alpha^{n} + \beta^{n}}\]

\[= (\alpha\beta)^n = 4^n\]

Answer: B

Question 2

Given the following polynomial equation \[s^{3} + 5.5s^{2} + 8.5s + 3 = 0,\] the number of roots of the polynomial which have real parts strictly less than \(-1\) is .

Solution

\[s^{3} + 5.5s^{2} + 8.5s + 3 = 0\]

Let \[s = z - 1.\]

Substitute: \[(z - 1)^3 + 5.5(z - 1)^2 + 8.5(z - 1) + 3 = 0\]

Expand: \[z^3 + 2.5z^2 + 0.5z - 1 = 0.\]

Routh table:

\[\begin{array}{c|cc} z^{3} & 1 & 0.5 \\ z^{2} & 2.5 & -1 \\ z^{1} & 0.9 & 0 \\ z^{0} & -1 & \\ \end{array}\]

There is one sign change in the first column.

\[\text{Therefore, two roots lie to the left of } s = -1.\]

Answer: 2

Question 3

Let \(A\) be a \(4 \times 3\) real matrix with rank \(2\). Which one of the following statements is TRUE?

  1. Rank of \(A^{T}A\) is less than 2.

  2. Rank of \(A^{T}A\) is equal to 2.

  3. Rank of \(A^{T}A\) is greater than 2.

  4. Rank of \(A^{T}A\) can be any number between 1 and 3.

Solution

Option 2 is correct: \[\operatorname{rank}(A^{T}A) = \operatorname{rank}(A) = \operatorname{rank}(A^{T}) = \operatorname{rank}(AA^{T}).\]

Since \(\operatorname{rank}(A) = 2\), \[\operatorname{rank}(A^{T}A) = 2.\]

Answer: B

Question 4

Let the eigenvalues of a \(2 \times 2\) matrix \(A\) be \(1\) and \(-2\) with eigenvectors \(x_{1}\) and \(x_{2}\) respectively. Then the eigenvalues and eigenvectors of the matrix \(A^{3}\) would, respectively, be:

Options:

  1. \(1, -8 : x_{1}, x_{2}\)

  2. \(-1, -2 : x_{1} + x_{2},\, x_{1} - x_{2}\)

  3. \(1, -2 : x_{1}, x_{2}\)

  4. \(2, 0 : x_{1} + x_{2},\, x_{1} - x_{2}\)

Solution

If \(\lambda\) is an eigenvalue of \(A\) with eigenvector \(x\), then for \(A^{3}\) the corresponding eigenvalue is: \[\lambda^{3}\]

Given eigenvalues: \[1,\; -2\]

So eigenvalues of \(A^{3}\) are: \[1^{3} = 1,\qquad (-2)^{3} = -8\]

Eigenvectors remain the same: \[x_{1},\; x_{2}\]

Answer: Option 1

Question 5

Candidates were asked to come to an interview with 3 pens each. Black, blue, green, and red were the permitted pen colours. The probability that a candidate comes with all 3 pens having the same colour is .

Options:

  1. \(0.1\)

  2. \(0.2\)

  3. \(0.25\)

  4. \(0.3\)

Solution

Total number of available colours: \[n = 4 \quad ( \text{Black, Blue, Green, Red} )\]

Since a candidate brings 3 pens, and repetition is allowed, the number of ways to choose colours with repetition is: \[\binom{n + r - 1}{r} = \binom{4 + 3 - 1}{3} = \binom{6}{3} = 20\]

Favourable cases: all three pens having the same colour. There are 4 such possibilities: \[\{\text{BBB, BBBlu, GGG, RRR}\}\]

Required probability: \[\frac{4}{20} = 0.2\]

Answer: B

Question 6

The value of \[\int_{-\infty}^{+\infty} e^{-t}\,\delta(2t - 2)\,dt,\] where \(\delta(t)\) is the Dirac delta function, is:

Options:

  1. \(\dfrac{1}{2e}\)

  2. \(\dfrac{2}{e}\)

  3. \(\dfrac{1}{e^{2}}\)

  4. \(\dfrac{1}{2e^{2}}\)

Solution

Given: \[I=\int_{-\infty}^{\infty} e^{-t}\,\delta(2t-2)\,dt\]

Rewrite the delta function: \[2t - 2 = 2(t - 1)\] Using the scaling property: \[\delta(2(t-1)) = \frac{1}{|2|}\,\delta(t-1)\]

Thus: \[I=\int_{-\infty}^{\infty} e^{-t}\,\frac{1}{2}\,\delta(t-1)\,dt\]

Apply the shifting property of the delta function: \[I = \frac{1}{2} \, e^{-t}\Big|_{t=1}\]

\[I = \frac{1}{2} \cdot e^{-1} = \frac{1}{2e}\]

Answer: A

Question 7

A function \(y(t)\), such that \(y(0)=1\) and \(y(1)=3e^{-1}\), is a solution of the differential equation \[\frac{d^{2}y}{dt^{2}} + 2\frac{dy}{dt} + y = 0.\] Then \(y(2)\) is

  1. \(5e^{-1}\)

  2. \(5e^{-2}\)

  3. \(7e^{-1}\)

  4. \(7e^{-2}\)

Solution

The differential equation \[y'' + 2y' + y = 0\] has the general solution: \[y(t) = e^{-t}(C_{1} + C_{2}t).\]

Using \(y(0)=1\): \[C_{1}=1.\]

Using \(y(1)=3e^{-1}\): \[e^{-1}(1 + C_{2}) = 3e^{-1} \quad\Rightarrow\quad 1 + C_{2} = 3 \quad\Rightarrow\quad C_{2}=2.\]

Thus, \[y(2) = e^{-2}(1 + 2\cdot 2) = 5e^{-2}.\]

Answer: Option B

Question 8

The value of the integral \[\oint_{C} \frac{2z + 5}{\left(z - \tfrac{1}{2}\right)\,(z^{2} - 4z + 5)}\,dz\] over the contour \(\lvert z \rvert = 1\), taken in the anti-clockwise direction, is:

  1. \(\dfrac{24\pi i}{13}\)

  2. \(\dfrac{48\pi i}{13}\)

  3. \(\dfrac{24}{13}\)

  4. \(\dfrac{12}{13}\)

Solution

Poles of the integrand:

\[z = \frac{1}{2}, \qquad z^{2} - 4z + 5 = (z-2)^2 + 1 \Rightarrow z = 2 \pm i.\]

Only the pole at \[z = \frac{1}{2}\] lies inside the contour \(\lvert z \rvert = 1\).

Residue at \(z=\tfrac12\):

\[\operatorname{Res}_{z=\frac12} = \frac{2z+5}{z^{2}-4z+5}\Bigg|_{z=\frac12}.\]

Compute numerator:

\[2\left(\tfrac12\right)+5 = 6.\]

Compute denominator:

\[\left(\tfrac12\right)^2 - 4\left(\tfrac12\right) + 5 = \frac14 - 2 + 5 = \frac{13}{4}.\]

Thus residue:

\[\text{Residue} = \frac{6}{\tfrac{13}{4}} = \frac{24}{13}.\]

Integral value:

\[\oint_{C} f(z)\,dz = 2\pi i \left(\frac{24}{13}\right) = \frac{48\pi i}{13}.\]

Answer: Option B

Question 9

Consider a \(3 \times 3\) matrix with every element being equal to \(1\). Its only non-zero eigenvalue is .

Solution

Let \[A=\begin{bmatrix} 1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{bmatrix}.\]

All rows are identical, so \(\operatorname{rank}(A)=1\). Hence, the matrix has exactly one non-zero eigenvalue.

Since every row sums to \(3\), the vector \[\begin{bmatrix}1\\1\\1\end{bmatrix}\] is an eigenvector with eigenvalue \(3\). The remaining two eigenvalues are \(0\).

Thus the only non-zero eigenvalue is: \[\boxed{3}\]

Answer: 3

Question 10

The maximum value attained by the function \[f(x) = x(x-1)(x-2)\] in the interval \([1,2]\) is .

Solution

Evaluate at the endpoints:

\[f(1) = 1(0)(-1) = 0, \qquad f(2) = 2(1)(0) = 0.\]

For \(x \in (1,2)\), \[x>0,\quad (x-1)>0,\quad (x-2)<0,\] so \[f(x) < 0.\]

Thus on the entire interval \([1,2]\), the function is never positive and attains its maximum value at the endpoints.

\[\boxed{ \max_{x\in[1,2]} f(x) = 0 }\]

Answer: 0


GATE EE Engineering Mathematics 2016 Set-2 Solved Paper

Question : Consider a linear time invariant system \(\dot{x} = Ax\) with initial condition \(x(0)=\alpha\) at \(t=0\). Suppose \(\alpha\) and \(\beta\) are eigenvectors of \((2 \times 2)\) matrix \(A\) corresponding to distinct eigenvalues \(\lambda_1\) and \(\lambda_2\) respectively. Then the response \(x(t)\) of the system due to initial condition \(x(0)=\alpha\) is

  1. \(e^{\lambda_1 t}\alpha\)

  2. \(e^{\lambda_2 t}\beta\)

  3. \(e^{\lambda_2 t}\alpha\)

  4. \(e^{\lambda_1 t}\alpha + e^{\lambda_2 t}\beta\)

Solution:

Given \(\dot{x} = Ax\), taking Laplace transform:

\[sX(s) - x(0) = AX(s) \Rightarrow X(s) = (sI - A)^{-1}\alpha\]

Thus, \[x(t) = e^{At}\alpha\]

Since \(\alpha\) is the eigenvector corresponding to eigenvalue \(\lambda_1\),

\[e^{At}\alpha = e^{\lambda_1 t} \alpha\]

\[\boxed{x(t) = e^{\lambda_1 t}\alpha}\]

Correct Option: A


Question : Let the probability density function of a random variable \(X\) be given as: \[f_X(x) = \frac{3}{2}e^{-3x}u(x) + ae^{4x}u(-x)\] where \(u(x)\) is the unit step function. Then the value of \(a\) and \(\Pr(X \le 0)\) respectively are:

  1. \(2, \frac{1}{2}\)

  2. \(4, \frac{1}{2}\)

  3. \(2, \frac{1}{4}\)

  4. \(4, \frac{1}{4}\)

Solution:

For a valid PDF, \[\int_{-\infty}^{\infty} f_X(x)\,dx = 1\]

\[\int_{-\infty}^{0} ae^{4x}dx + \int_{0}^{\infty} \frac{3}{2}e^{-3x}dx = 1\]

\[a\left[\frac{e^{4x}}{4}\right]_{-\infty}^{0} + \frac{3}{2}\left[\frac{e^{-3x}}{-3}\right]_{0}^{\infty} = 1\]

\[a \cdot \frac{1}{4}(1 - 0) + \frac{3}{2} \cdot \left(0 - (-\frac{1}{3})\right) = 1\]

\[\frac{a}{4} + \frac{1}{2} = 1 \quad \Rightarrow \quad \frac{a}{4} = \frac{1}{2} \Rightarrow a = 2\]

Now, \[P(X \le 0) = \int_{-\infty}^{0} 2e^{4x}dx = 2\left[\frac{e^{4x}}{4}\right]_{-\infty}^{0} = \frac{1}{2}(1 - 0) = \frac{1}{2}\]

\[\boxed{a = 2,\; \Pr(X \le 0) = \frac{1}{2}}\]

Correct Option: A


Question : Let \(P=\begin{bmatrix}3 & 1\\[4pt]1 & 3\end{bmatrix}\). Consider the set \(S\) of all vectors \(\begin{pmatrix}x\\[2pt]y\end{pmatrix}\) such that \(a^2+b^2=1\) where \(\begin{pmatrix}a\\[2pt]b\end{pmatrix}=P\begin{pmatrix}x\\[2pt]y\end{pmatrix}\). Then \(S\) is

  1. A circle of radius \(\sqrt{10}\).

  2. A circle of radius \(\dfrac{1}{\sqrt{10}}\).

  3. An ellipse with major axis along \(\begin{pmatrix}1\\[2pt]1\end{pmatrix}\).

  4. An ellipse with minor axis along \(\begin{pmatrix}1\\[2pt]1\end{pmatrix}\).

Solution:

We have \[\begin{pmatrix}a\\ b\end{pmatrix} = \begin{bmatrix}3 & 1\\[4pt]1 & 3\end{bmatrix}\begin{pmatrix}x\\[2pt]y\end{pmatrix} \quad\Rightarrow\quad a=3x+y,\; b=x+3y.\] Condition \(a^2+b^2=1\) gives \[(3x+y)^2+(x+3y)^2=1\] which expands to \[10x^2+12xy+10y^2=1.\]

Introduce rotated coordinates \[u=x+y,\qquad v=x-y.\] In these variables \[x=\frac{u+v}{2},\qquad y=\frac{u-v}{2},\] and the quadratic becomes \[8u^2+2v^2=1.\] Divide both sides to obtain the standard ellipse form: \[\frac{u^2}{1/8}+\frac{v^2}{1/2}=1.\]

Since \(1/2>1/8\), the semi-axis along the \(v\)-direction (which is the line \(x-y=0\), i.e. direction vector \(\begin{pmatrix}1\\[2pt]-1\end{pmatrix}\)) is larger; the semi-axis along the \(u\)-direction (line \(x+y=0\), direction \(\begin{pmatrix}1\\[2pt]1\end{pmatrix}\)) is smaller. Hence the curve is an ellipse whose **minor axis** lies along \(\begin{pmatrix}1\\[2pt]1\end{pmatrix}\).

\[\boxed{\text{Correct Option: D. An ellipse with minor axis along } \begin{pmatrix}1\\[2pt]1\end{pmatrix}.}\]


Question : Let \(y(x)\) be the solution of the differential equation \[\frac{d^2 y}{dx^2} - 4\frac{dy}{dx} + 4y = 0\] with initial conditions \(y(0)=0\) and \(\left.\frac{dy}{dx}\right|_{x=0}=1\). Then the value of \(y(1)\) is __________.

  1. \(e^2\)

  2. \(2e^2\)

  3. \(e\)

  4. \(1\)

Solution:

Given: \[\frac{d^2 y}{dx^2} - 4\frac{dy}{dx} + 4y = 0, \quad y(0)=0,\quad y'(0)=1\]

Taking Laplace transform: \[s^2Y(s) - sy(0) - y'(0) - 4[sY(s)-y(0)] + 4Y(s) = 0\]

Substitute initial values \(y(0)=0\), \(y'(0)=1\): \[s^2Y(s) - 1 - 4sY(s) + 4Y(s) = 0\]

Factor: \[(s^2 - 4s + 4)Y(s) = 1\] \[Y(s) = \frac{1}{(s-2)^2}\]

Taking inverse Laplace: \[\mathcal{L}^{-1}\left\{\frac{1}{(s-2)^2}\right\} = te^{2t}\]

Thus, \[y(t) = te^{2t}\]

So, \[y(1) = 1\cdot e^{2} = e^2\]

\[\boxed{e^2}\]

Correct Option: A


Question : The value of the integral \[2\int_{-\infty}^{\infty} \left(\frac{\sin 2\pi t}{\pi t}\right) dt\] is equal to

  1. 0

  2. 0.5

  3. 1

  4. 2

Solution:

We use the Fourier transform property:

\[\int_{-\infty}^{\infty} x(t)\,dt = X(0)\]

Also recall the standard Fourier transform pair: \[\frac{\sin(at)}{\pi t} \quad \Longleftrightarrow \quad \begin{cases} 1, & |\omega| < a \\ 0, & |\omega| > a \end{cases}\]

Here \(a = 2\pi\), so \[\frac{\sin 2\pi t}{\pi t} \quad \Longleftrightarrow \quad X(\omega) = 1 \text{ for } |\omega| < 2\pi\]

Thus, \[\int_{-\infty}^{\infty} \frac{\sin 2\pi t}{\pi t}\,dt = X(0) = 1\]

Therefore, \[2\int_{-\infty}^{\infty} \left(\frac{\sin 2\pi t}{\pi t}\right) dt = 2(1) = 2\]

\[\boxed{2}\]

Correct Option: D


Question : The value of the line integral \[\int_{C}\bigl(2xy^{2}\,dx + 2x^{2}y\,dy + dz\bigr)\] along a path joining the origin \((0,0,0)\) and the point \((1,1,1)\) is

  1. \(0\)

  2. \(2\)

  3. \(4\)

  4. \(6\)

Solution:

Parameterize the straight line from \((0,0,0)\) to \((1,1,1)\) by \[x(t)=t,\qquad y(t)=t,\qquad z(t)=t,\qquad 0\le t\le 1,\] so \(dx=dy=dz=dt\).

Substitute into the integrand: \[2xy^{2}\,dx + 2x^{2}y\,dy + dz = 2t\cdot t^{2}\,dt + 2t^{2}\cdot t\,dt + 1\cdot dt = 2t^{3} + 2t^{3} + 1 \,=\, 4t^{3}+1.\]

Hence the integral is \[\int_{0}^{1} (4t^{3}+1)\,dt = \left[t^{4}+t\right]_{0}^{1} = 1+1 = 2.\]

\[\boxed{2}\]


Question : Let \(f(x)\) be a real, periodic function satisfying \(f(-x)=-f(x)\). The general form of its Fourier series representation would be

  1. \(f(x)=a_0+\sum_{k=1}^{\infty} a_k\cos(kx)\)

  2. \(f(x)=\sum_{k=1}^{\infty} b_k\sin(kx)\)

  3. \(f(x)=a_0+\sum_{k=1}^{\infty} a_{2k}\cos(kx)\)

  4. \(f(x)=\sum_{k=0}^{\infty} a_{2k+1}\sin((2k+1)x)\)

Solution:

Since \(f(-x)=-f(x)\), \(f\) is an odd function. The Fourier series of a real odd periodic function contains no cosine (even) terms and no constant (DC) term — only sine terms remain. Therefore the series has the form \[f(x)=\sum_{k=1}^{\infty} b_k\sin(kx).\]

Correct Option: B


Question : The solution of the differential equation, for \(t>0\), \(y''(t) + 2y'(t) + y(t) = 0\) with initial conditions \(y(0)=0\) and \(y'(0)=1\), is \((u(t)\) denotes the unit step function\()\)

  1. \(te^{-t}u(t)\)

  2. \((e^{-t}-te^{-t})u(t)\)

  3. \((-e^{-t}+te^{-t})u(t)\)

  4. \(e^{-t}u(t)\)

Solution:

Taking Laplace transform,

\[s^2Y(s) - sy(0) - y'(0) + 2[sY(s) - y(0)] + Y(s)=0\]

\[(s^2 + 2s +1)Y(s) -1 = 0 \Rightarrow Y(s)=\frac{1}{(s+1)^2}\]

Inverse Laplace:

\[y(t)=t e^{-t}u(t)\]

Correct Option: A


Question : A \(3\times 3\) matrix \(P\) is such that \(P^3 = P\). Then the eigenvalues of \(P\) are

  1. \(1,\,1,\,-1\)

  2. \(1,\,0.5+j0.866,\,0.5-j0.866\)

  3. \(1,\,-0.5+j0.866,\,-0.5-j0.866\)

  4. \(0,\,1,\,-1\)

Solution:

If \(\lambda\) is an eigenvalue of \(P\) with eigenvector \(v\neq 0\), then \[P^3v = Pv \;\Rightarrow\; \lambda^3 v = \lambda v\] so \[\lambda^3 = \lambda \quad\Rightarrow\quad \lambda(\lambda^2-1)=0.\] Thus \(\lambda\in\{0,1,-1\}\). For a \(3\times 3\) matrix the spectrum can consist of these values (with multiplicities summing to 3). Therefore the eigenvalues are \(0,1,-1\).

Correct Option: D


Question : Consider a causal LTI system characterized by the differential equation \[\frac{dy(t)}{dt} + \frac{1}{6}y(t) = 3x(t).\] The response of the system to the input \(x(t)=3e^{-t/3}u(t)\), where \(u(t)\) denotes the unit step function, is

  1. \(9e^{-t/3}u(t)\)

  2. \(9e^{-t/6}u(t)\)

  3. \(9e^{-t/3}u(t) - 6e^{-t/6}u(t)\)

  4. \(54e^{-t/6}u(t) - 54e^{-t/3}u(t)\)

Solution:

Take Laplace transforms (zero initial conditions): \[(s+\tfrac{1}{6})Y(s)=3\cdot X(s)=3\cdot\frac{3}{s+\tfrac{1}{3}}=\frac{9}{s+\tfrac{1}{3}}.\] Hence \[Y(s)=\frac{9}{(s+\tfrac{1}{6})(s+\tfrac{1}{3})}.\] Partial fractions: \[\frac{9}{(s+a)(s+b)}=\frac{9}{b-a}\Big(\frac{1}{s+a}-\frac{1}{s+b}\Big),\] with \(a=\tfrac{1}{6},\,b=\tfrac{1}{3}\), so \(b-a=\tfrac{1}{6}\) and \(\dfrac{9}{b-a}=54\). Thus \[Y(s)=54\Big(\frac{1}{s+\tfrac{1}{6}}-\frac{1}{s+\tfrac{1}{3}}\Big).\] Inverse Laplace gives \[y(t)=54\big(e^{-t/6}-e^{-t/3}\big)u(t).\]

Correct Option: D