Control Systems - GATE EE 2009 Solved Paper

Question 1

The polar plot of an open loop stable system is shown below. The closed loop system is

polar plot of an open loop stable system
  1. always stable

  2. marginally stable

  3. unstable with one pole on the RH s-plane

  4. unstable with two poles on the RH s-plane

Topic: Frequency Response Analysis

Solution 1

Answer: D

Analysis using Nyquist Stability Criterion:

Question 2

The first two rows of Routh’s tabulation of a third order equation are as follows:

\[\begin{array}{c|cc} s^3 & 2 & 2 \\ s^2 & 4 & 4 \\ \end{array}\]

This means there are

  1. Two roots at \(s = \pm j\) and one root in right half s-plane

  2. Two roots at \(s = \pm j2\) and one root in left half s-plane

  3. Two roots at \(s = \pm j2\) and one root in right half s-plane

  4. Two roots at \(s = \pm j\) and one root in left half s-plane

Topic: Routh-Hurwitz Stability Criterion

Solution 2

Answer: D

Routh Array Analysis:

Given initial Routh array: \[\begin{array}{c|cc} s^3 & 2 & 2 \\ s^2 & 4 & 4 \\ s^1 & 0 & \\ \end{array}\]

  1. The third row becomes zero, indicating the presence of imaginary axis roots

  2. Form auxiliary equation from \(s^2\) row: \[4s^2 + 4 = 0 \Rightarrow s^2 = -1 \Rightarrow s = \pm j\]

  3. Differentiate the auxiliary equation: \(\frac{d}{ds}(4s^2 + 4) = 8s\)

  4. Replace the \(s^1\) row with coefficients of the derivative: \[\begin{array}{c|cc} s^3 & 2 & 2 \\ s^2 & 4 & 4 \\ s^1 & 8 & 0 \\ s^0 & 4 & \\ \end{array}\]

  5. No sign changes in the first column \(\Rightarrow\) no roots in RHS

  6. Conclusion: Two roots at \(s = \pm j\) and one root in LHS

Question 3

The asymptotic approximation of the log-magnitude vs frequency plot of a system containing only real poles and zeros is shown. Its transfer function is

image
  1. \(\dfrac{10(s+5)}{s(s+2)(s+25)}\)

  2. \(\dfrac{1000(s+5)}{s^2(s+2)(s+25)}\)

  3. \(\dfrac{100(s+5)}{s(s+2)(s+25)}\)

  4. \(\dfrac{80(s+5)}{s^2(s+2)(s+25)}\)

Topic: Bode Plots

Solution 3

Answer: B

Bode Plot Analysis:

Question 4

The unit-step response of a unity feedback system with open loop transfer function \(G(s) = \dfrac{K}{(s+1)(s+2)}\) is shown in the figure. The value of \(K\) is

image
  1. 0.5

  2. 2

  3. 4

  4. 6

Topic: Steady State Error

Solution 4

Answer: D

Steady-State Analysis:

Question 5

The open loop transfer function of a unity feedback system is given by \(G(s) = \dfrac{e^{-0.1s}}{s}\). The gain margin of the system is

  1. 11.95 dB

  2. 17.67 dB

  3. 21.33 dB

  4. 23.9 dB

Topic: Gain Margin

Solution 5

Answer: D

Gain Margin Calculation:

Given: \(G(s) = \dfrac{e^{-0.1s}}{s}\)

  1. Frequency response: \(G(j\omega) = \dfrac{e^{-j0.1\omega}}{j\omega}\)

  2. Magnitude: \(|G(j\omega)| = \dfrac{1}{\omega}\)

  3. Phase: \(\angle G(j\omega) = -\dfrac{\pi}{2} - 0.1\omega\)

  4. Find phase crossover frequency \(\omega_{pc}\) where phase = \(-\pi\): \[-\frac{\pi}{2} - 0.1\omega_{pc} = -\pi \Rightarrow -0.1\omega_{pc} = -\frac{\pi}{2}\] \[\omega_{pc} = 5\pi \approx 15.708 \text{ rad/s}\]

  5. Calculate gain at \(\omega_{pc}\): \[|G(j\omega_{pc})| = \frac{1}{5\pi} \approx 0.06366\]

  6. Compute gain margin: \[GM = 20\log_{10}\left(\frac{1}{|G(j\omega_{pc})|}\right) = 20\log_{10}(5\pi) \approx 23.9 \text{ dB}\]

Question 6

A system is described by the following state and output equations: \[\frac{dx_1(t)}{dt} = -3x_1(t) + x_2(t) + 2u(t)\] \[\frac{dx_2(t)}{dt} = -2x_2(t) + u(t)\] \[y(t) = x_1(t)\] where \(u(t)\) is the input and \(y(t)\) is the output. The system transfer function is

  1. \(\dfrac{s+2}{s^2+5s-6}\)

  2. \(\dfrac{s+3}{s^2+5s+6}\)

  3. \(\dfrac{-2s+5}{s^2+5s+6}\)

  4. \(\dfrac{-2s-5}{s^2+5s-6}\)

Topic: State Space to Transfer Function

Solution 6

Answer: C

State Space to Transfer Function Conversion:

  1. Extract state-space matrices: \[A = \begin{bmatrix} -3 & 1 \\ 0 & -2 \end{bmatrix}, \quad B = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad D = 0\]

  2. Compute \((sI - A)\): \[sI - A = \begin{bmatrix} s+3 & -1 \\ 0 & s+2 \end{bmatrix}\]

  3. Find inverse \((sI - A)^{-1}\): \[(sI - A)^{-1} = \frac{1}{(s+3)(s+2)} \begin{bmatrix} s+2 & 1 \\ 0 & s+3 \end{bmatrix}\]

  4. Calculate transfer function: \[G(s) = C(sI - A)^{-1}B = \frac{1}{s^2 + 5s + 6} \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} s+2 & 1 \\ 0 & s+3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}\]

  5. Perform matrix multiplication: \[= \frac{1}{s^2 + 5s + 6} \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 2(s+2) + 1 \\ s+3 \end{bmatrix} = \frac{2s + 5}{s^2 + 5s + 6}\]

Question 7

The state-transition matrix of the above system is

  1. \(\begin{bmatrix} e^{-3t} & 0 \\ e^{-2t} + e^{-3t} & e^{-2t} \end{bmatrix}\)

  2. \(\begin{bmatrix} e^{-3t} & e^{-2t} - e^{-3t} \\ 0 & e^{-2t} \end{bmatrix}\)

  3. \(\begin{bmatrix} e^{3t} & e^{-2t} - e^{-3t} \\ 0 & e^{-2t} \end{bmatrix}\)

  4. \(\begin{bmatrix} e^{-3t} & e^{-2t} + e^{-3t} \\ 0 & e^{-2t} \end{bmatrix}\)

Topic: State Transition Matrix

Solution 7

Answer: B

State Transition Matrix Calculation:

From previous solution: \[(sI - A)^{-1} = \begin{bmatrix} \frac{1}{s+3} & \frac{1}{(s+2)(s+3)} \\ 0 & \frac{1}{s+2} \end{bmatrix}\]

  1. Partial fraction decomposition: \[\frac{1}{(s+2)(s+3)} = \frac{1}{s+2} - \frac{1}{s+3}\]

  2. Rewrite \((sI - A)^{-1}\): \[(sI - A)^{-1} = \begin{bmatrix} \frac{1}{s+3} & \frac{1}{s+2} - \frac{1}{s+3} \\ 0 & \frac{1}{s+2} \end{bmatrix}\]

  3. Take inverse Laplace transform: \[e^{At} = \mathcal{L}^{-1}[(sI - A)^{-1}] = \begin{bmatrix} e^{-3t} & e^{-2t} - e^{-3t} \\ 0 & e^{-2t} \end{bmatrix}\]

  4. The state-transition matrix \(\Phi(t) = e^{At}\)