Power System Analysis Methods GATE EE Exam Quick Notes

Bus Admittance Matrix

Bus Admittance Matrix (Ybus) Formation

Key Concepts for GATE

  • Diagonal Elements (\(Y_{ii}\)): Sum of admittances connected to bus \(i\)

    \[Y_{ii} = \sum_{k=1}^n y_{ik}\]
  • Off-Diagonal Elements (\(Y_{ij}\)): Negative of admittance between buses \(i\) and \(j\)

    \[Y_{ij} = -y_{ij}\]
  • Properties:

    • Symmetric for symmetric networks

    • Sparse matrix (many zero elements)

    • Complex and singular

    • Rank = \(n-1\) (where \(n\) is number of buses)

Example

For a 3-bus system:

\[Y_{bus} = \begin{bmatrix} y_{10}+y_{12}+y_{13} & -y_{12} & -y_{13} \\ -y_{12} & y_{20}+y_{12}+y_{23} & -y_{23} \\ -y_{13} & -y_{23} & y_{30}+y_{13}+y_{23} \end{bmatrix}\]

Ybus Formation Algorithm

  • Step 1: Initialize Ybus as zero matrix of size n×n

  • Step 2: For each transmission line between buses i and j:

    • Add line admittance \(y_{ij}\) to \(Y_{ii}\) and \(Y_{jj}\)

    • Subtract line admittance \(y_{ij}\) from \(Y_{ij}\) and \(Y_{ji}\)

  • Step 3: For each shunt element at bus i:

    • Add shunt admittance \(y_i\) to \(Y_{ii}\)

  • Step 4: For transformers, modify admittances based on tap settings

GATE Tip

Line charging admittance is added to diagonal elements as:

\[Y_{ii} = Y_{ii} + \dfrac{jB_c}{2}\]
where \(B_c\) is the total line charging susceptance

Ybus Modification Techniques

  • Adding a New Bus:

    • Increase matrix size to \((n+1) \times (n+1)\)

    • Add new row and column

    • Update diagonal elements for connected buses

  • Changing a Line Impedance:

    • Calculate difference: \(\Delta y = y_{new} - y_{old}\)

    • Modify: \(Y_{ii} = Y_{ii} + \Delta y\), \(Y_{jj} = Y_{jj} + \Delta y\)

    • Modify: \(Y_{ij} = Y_{ij} - \Delta y\), \(Y_{ji} = Y_{ji} - \Delta y\)

  • Removing a Line:

    • Subtract old line admittance from diagonal elements

    • Add old line admittance to off-diagonal elements

Transformer Tap Ratio

For transformer with tap ratio a:1 between buses i and j:

\[Y_{ii} = Y_{ii} + \dfrac{y_t}{a^2}, \quad Y_{jj} = Y_{jj} + y_t\]
\[Y_{ij} = Y_{ji} = -\dfrac{y_t}{a}\]

Load Flow Methods

Load Flow Problem Formulation

  • Power Flow Equations:

    \[P_i = |V_i| \sum_{j=1}^n |V_j| |Y_{ij}| \cos(\theta_{ij} + \delta_j - \delta_i)\]
    \[Q_i = -|V_i| \sum_{j=1}^n |V_j| |Y_{ij}| \sin(\theta_{ij} + \delta_j - \delta_i)\]
  • Bus Classifications:

    • Slack Bus: \(|V|\) and \(\delta\) specified

    • PV Bus: \(P\) and \(|V|\) specified

    • PQ Bus: \(P\) and \(Q\) specified

  • Unknowns: \((n-1)\) voltage angles + \((n-m-1)\) voltage magnitudes

  • Equations: \((n-1)\) active power + \((n-m-1)\) reactive power

Note

n = total buses, m = number of PV buses (including slack)

Gauss-Seidel Method

  • Iterative Formula:

    \[V_i^{k+1} = \dfrac{1}{Y_{ii}} \left[ \dfrac{P_i - jQ_i}{(V_i^k)^*} - \sum_{j=1}^{i-1} Y_{ij} V_j^{k+1} - \sum_{j=i+1}^n Y_{ij} V_j^k \right]\]
  • For PV Buses:

    • Calculate \(Q_i\) from voltage update

    • If \(Q_i\) within limits, use calculated \(V_i^{k+1}\)

    • If \(Q_i\) exceeds limits, treat as PQ bus

  • Acceleration Factor:

    \[V_i^{k+1} = V_i^k + \alpha(V_i^{calc} - V_i^k)\]
    where \(\alpha = 1.3\) to \(1.6\) for optimal convergence

Convergence Criterion

\[\max|V_i^{k+1} - V_i^k| < \epsilon\]
where \(\epsilon = 10^{-4}\) to \(10^{-6}\)

Newton-Raphson Method

  • Power Mismatch Equations:

    \[\Delta P_i = P_i^{spec} - P_i^{calc}\]
    \[\Delta Q_i = Q_i^{spec} - Q_i^{calc}\]
  • Linearized System:

    \[\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} J_1 & J_2 \\ J_3 & J_4 \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta |V| \end{bmatrix}\]
  • Jacobian Elements:

    • \(J_1 = \dfrac{\partial P}{\partial \delta}\), \(J_2 = \dfrac{\partial P}{\partial |V|}\)

    • \(J_3 = \dfrac{\partial Q}{\partial \delta}\), \(J_4 = \dfrac{\partial Q}{\partial |V|}\)

Convergence

Quadratic convergence: error reduces as square of previous error

\[\max|\Delta P|, \max|\Delta Q| < \epsilon\]

Jacobian Matrix Elements

  • Diagonal Elements:

    \[J_{1ii} = \dfrac{\partial P_i}{\partial \delta_i} = -Q_i - |V_i|^2 B_{ii}\]
    \[J_{4ii} = \dfrac{\partial Q_i}{\partial |V_i|} = \dfrac{Q_i}{|V_i|} + |V_i| B_{ii}\]
  • Off-Diagonal Elements:

    \[J_{1ij} = \dfrac{\partial P_i}{\partial \delta_j} = |V_i||V_j|[G_{ij}\sin(\delta_i-\delta_j) - B_{ij}\cos(\delta_i-\delta_j)]\]
    \[J_{2ij} = \dfrac{\partial P_i}{\partial |V_j|} = |V_i|[G_{ij}\cos(\delta_i-\delta_j) + B_{ij}\sin(\delta_i-\delta_j)]\]

GATE Tip

For PV buses, reactive power equations are replaced by voltage magnitude constraints

Comparison of Load Flow Methods

Comparison of load flow analysis methods
Parameter Gauss-Seidel Newton-Raphson
Convergence Rate Linear Quadratic
Iterations Required \(50-100\) \(3-5\)
Memory Requirement Low High
Computation per Iteration Low High
System Size Small (\(<100\) buses) Large (\(>100\) buses)
Initial Guess Sensitivity Less sensitive More sensitive
PV Bus Handling Requires special treatment Natural handling
Programming Complexity Simple Complex

Selection Criteria

Use Gauss-Seidel for small systems, Newton-Raphson for large systems

Fast Decoupled Load Flow

  • Decoupling Assumptions:

    • \(\dfrac{\partial P}{\partial |V|} \approx 0\) (weak coupling)

    • \(\dfrac{\partial Q}{\partial \delta} \approx 0\) (weak coupling)

    • \(Q_i \ll |V_i|^2 B_{ii}\) (high X/R ratio)

  • Simplified Equations:

    \[\Delta P = B' \Delta \delta\]
    \[\Delta Q = B'' \Delta |V|\]
  • Advantages:

    • Faster than Newton-Raphson

    • Constant coefficient matrices

    • Single matrix factorization

Application

Widely used in online applications due to computational efficiency

Voltage and Frequency Control

Voltage Control - Basic Concepts

  • Voltage Regulation:

    \[\text{Voltage Regulation} = \dfrac{V_{no-load} - V_{full-load}}{V_{full-load}} \times 100\%\]
  • Reactive Power - Voltage Relationship:

    \[V_r = V_s - \dfrac{XQ}{V_s}\]
    where \(V_r\) = receiving end voltage, \(V_s\) = sending end voltage
  • Control Objectives:

    • Maintain voltage within \(\pm 5\%\) of nominal

    • Minimize transmission losses

    • Improve system stability

Key Principle

Reactive power flow determines voltage profile in power systems

Voltage Control Methods

  • Generator Excitation Control:

    • Fastest response (milliseconds)

    • Controls terminal voltage

    • Automatic Voltage Regulator (AVR)

  • On-Load Tap Changer (OLTC):

    • Step voltage control (\(\pm 10\%\) in 32 steps)

    • Response time: 30-60 seconds

    • Discrete control action

  • Shunt Compensation:

    • Capacitors: voltage support

    • Reactors: voltage reduction

    • Switchable banks

  • Series Compensation:

    • Reduces line reactance

    • Improves voltage regulation

    • Increases power transfer capability

  • Synchronous Condensers:

    • Continuous reactive power control

    • Inertia support to system

    • Fast response capability

  • FACTS Devices:

    • SVC, STATCOM, TCSC

    • Rapid response

    • Flexible control

Frequency Control - Basic Concepts

  • Frequency Deviation:

    \[\Delta f = f - f_0\]
    where \(f_0 = 50\) Hz (nominal frequency)
  • Power-Frequency Relationship:

    \[\Delta P = D \Delta f\]
    where \(D\) is load damping coefficient
  • Control Objectives:

    • Maintain frequency within \(\pm 0.5\) Hz of nominal

    • Balance generation and load continuously

    • Minimize area control error (ACE)

System Inertia

\[H = \dfrac{1}{2} \dfrac{J\omega_0^2}{S_{base}}\]
where \(H\) is inertia constant, \(J\) is moment of inertia

Frequency Control Hierarchy

  • Primary Control (Governor Response):

    • Response time: 5-10 seconds

    • Droop characteristic: 4-5%

    • Local control action

    • Arrests frequency deviation

  • Secondary Control (AGC):

    • Response time: 30 seconds to 1 minute

    • Restores frequency to nominal

    • Maintains scheduled tie-line flows

    • Centralized control

  • Tertiary Control (Economic Dispatch):

    • Response time: 15-30 minutes

    • Optimizes generation costs

    • Manages reserves

    • Manual/automatic operation

Governor Characteristics

  • Droop Characteristic:

    \[R = \dfrac{\Delta f / f_0}{\Delta P / P_{rated}} \times 100\%\]
  • Speed Regulation:

    \[R = \dfrac{f_{nl} - f_{fl}}{f_{fl}} \times \dfrac{P_{rated}}{P_{fl}} \times 100\%\]
  • Free Governor Mode:

    • Generator follows load changes

    • Frequency varies with load

  • Isochronous Mode:

    • Maintains constant frequency

    • Used for single machine systems

Steady-State Frequency

For multiple generators: \(f_{ss} = f_0 - \dfrac{\Delta P_L}{\sum (1/R_i)}\)

Load Frequency Control (LFC)

  • Single Area System:

    • Transfer function: \(G(s) = \dfrac{1}{Ds + 1/R}\)

    • Time constant: \(T = \dfrac{H}{D}\)

    • Frequency response: \(\Delta f = \dfrac{-\Delta P_L}{D + 1/R}\)

  • Multi-Area System:

    • Area Control Error: \(ACE_i = \Delta P_{tie,i} + B_i \Delta f_i\)

    • Frequency bias: \(B_i = \dfrac{1}{R_i} + D_i\)

    • Tie-line power: \(\Delta P_{tie} = \dfrac{2\pi T_{12}}{s}(\Delta f_1 - \Delta f_2)\)

Control Strategy

AGC adjusts generation to make ACE = 0 in steady state

Automatic Generation Control (AGC)

  • Objectives:

    • Regulate frequency to scheduled value

    • Maintain net interchange at scheduled value

    • Distribute load among units economically

  • Control Strategies:

    • Proportional control: \(\Delta P_c = -K_p \times ACE\)

    • Integral control: \(\Delta P_c = -K_i \int ACE \, dt\)

    • PI control: \(\Delta P_c = -K_p \times ACE - K_i \int ACE \, dt\)

  • Performance Indices:

    • Settling time

    • Maximum frequency deviation

    • Steady-state error

Key Formulas for GATE

  1. Ybus diagonal element: \(Y_{ii} = \sum_{k=1}^n y_{ik}\)

  2. Gauss-Seidel voltage update:

    \[V_i^{k+1} = \dfrac{1}{Y_{ii}} \left[ \dfrac{P_i - jQ_i}{(V_i^k)^*} - \sum_{j\neq i} Y_{ij} V_j \right]\]
  3. Power flow equations:

    \[P_i = |V_i| \sum_{j=1}^n |V_j| |Y_{ij}| \cos(\theta_{ij} + \delta_j - \delta_i)\]
  4. Governor droop: \(R = \dfrac{\Delta f / f_0}{\Delta P / P_{rated}} \times 100\%\)

  5. Area Control Error: \(ACE = \Delta P_{tie} + B \Delta f\)

  6. Frequency response: \(\Delta f_{ss} = \dfrac{-\Delta P_L}{D + 1/R}\)

Important GATE Points

  • Ybus Properties:

    • Always singular (determinant = 0)

    • Symmetric for passive networks

    • Sparse matrix structure

  • Load Flow Convergence:

    • Newton-Raphson: 3-5 iterations

    • Gauss-Seidel: 50-100 iterations

    • Flat start: \(V = 1.0 \angle 0°\) for all buses

  • Control Hierarchy:

    • Primary: Governor (seconds)

    • Secondary: AGC (minutes)

    • Tertiary: Economic dispatch (hours)

GATE Strategy

Focus on numerical problems involving Ybus formation, load flow iterations, and frequency control calculations