Inverters in Power Electronics – GATE Exam Quick Notes & Concepts

Introduction to Inverters

What are Inverters?

  • Definition: Power electronic circuits that convert DC power to AC power

  • Function: Convert fixed DC voltage to variable AC voltage with variable frequency

  • Classification:

    • Voltage Source Inverters (VSI)

    • Current Source Inverters (CSI)

  • Based on Output:

    • Single-phase inverters

    • Three-phase inverters

  • Applications: Motor drives, UPS systems, renewable energy systems

Single-Phase Voltage Source Inverters

Single-Phase Half-Bridge VSI

  • Configuration: Two switches, center-tapped DC supply

  • Output Voltage: \(V_o = \pm \dfrac{V_{dc}}{2}\)

  • RMS Output Voltage: \(V_{o,rms} = \dfrac{V_{dc}}{2}\)

  • Fundamental Component: \(V_{o1} = \dfrac{2V_{dc}}{\pi}\)

  • RMS Fundamental: \(V_{o1,rms} = \dfrac{V_{dc}\sqrt{2}}{\pi}\)

  • Distortion Factor: \(DF = \dfrac{V_{o1,rms}}{V_{o,rms}} = \dfrac{2\sqrt{2}}{\pi} = 0.9\)

  • THD: \(THD = \sqrt{\left(\dfrac{V_{o,rms}}{V_{o1,rms}}\right)^2 - 1} = 48.34\%\)

Single-Phase Full-Bridge VSI

  • Configuration: Four switches in H-bridge configuration

  • Output Voltage: \(V_o = \pm V_{dc}\)

  • RMS Output Voltage: \(V_{o,rms} = V_{dc}\)

  • Fundamental Component: \(V_{o1} = \dfrac{4V_{dc}}{\pi}\)

  • RMS Fundamental: \(V_{o1,rms} = \dfrac{2\sqrt{2}V_{dc}}{\pi}\)

  • Switching Modes:

    • Mode 1: S1, S4 ON \(\to\) \(V_o = +V_{dc}\)

    • Mode 2: S2, S3 ON \(\to\) \(V_o = -V_{dc}\)

  • THD: \(48.34\%\) (same as half-bridge)

Single-Phase VSI with R Load

  • Load Current: \(i_o(t) = \dfrac{v_o(t)}{R}\)

  • RMS Current: \(I_{o,rms} = \dfrac{V_{dc}}{R}\) (full-bridge)

  • Average Power: \(P_{avg} = \dfrac{V_{dc}^2}{R}\)

  • Power Factor: \(pf = 1.0\) (resistive load)

  • Fundamental RMS Current: \(I_{o1,rms} = \dfrac{2\sqrt{2}V_{dc}}{\pi R}\)

Single-Phase VSI with RL Load

  • Load Impedance: \(Z = \sqrt{R^2 + (\omega L)^2}\)

  • Current Waveform: Exponential rise and fall

  • Fundamental RMS Current: \(I_{o1,rms} = \dfrac{2\sqrt{2}V_{dc}}{\pi Z}\)

  • Phase Angle: \(\phi = \tan^{-1}\left(\dfrac{\omega L}{R}\right)\)

  • Power Factor: \(pf = \cos\phi = \dfrac{R}{Z}\)

  • Conduction Angle: \(> 180^{\circ}\) due to inductance

  • Freewheeling Required: For continuous current flow

Three-Phase Voltage Source Inverters

Three-Phase VSI Configuration

  • Structure: Six switches arranged in three legs

  • Switching States: \(2^3 = 8\) possible states

  • Valid States: 6 active states + 2 zero states

  • Line Voltages: \(V_{ab}, V_{bc}, V_{ca}\)

  • Phase Voltages: \(V_{ao}, V_{bo}, V_{co}\) (with respect to neutral)

  • Relationship: \(V_{line} = \sqrt{3} \times V_{phase}\)

Three-Phase VSI - \(180^{\circ}\) Conduction Mode

  • Conduction: Each switch conducts for \(180^{\circ}\)

  • Switching Sequence: Six-step operation (\(60^{\circ}\) intervals)

  • Line Voltage RMS: \(V_{L,rms} = \dfrac{2\sqrt{3}V_{dc}}{\pi}\)

  • Phase Voltage RMS: \(V_{ph,rms} = \dfrac{2V_{dc}}{\pi}\)

  • Fundamental Line Voltage: \(V_{L1,rms} = \dfrac{\sqrt{6}V_{dc}}{\pi}\)

  • Fundamental Phase Voltage: \(V_{ph1,rms} = \dfrac{\sqrt{2}V_{dc}}{\pi}\)

Three-Phase VSI - \(120^{\circ}\) Conduction Mode

  • Conduction: Each switch conducts for \(120^{\circ}\)

  • Operation: Only two switches ON at any time

  • Line Voltage RMS: \(V_{L,rms} = \dfrac{\sqrt{6}V_{dc}}{\pi}\)

  • Phase Voltage RMS: \(V_{ph,rms} = \dfrac{\sqrt{2}V_{dc}}{\pi}\)

  • Fundamental Line Voltage: \(V_{L1,rms} = \dfrac{3V_{dc}}{2\pi}\)

  • Advantages: Lower harmonic content

  • Disadvantages: Reduced output voltage

Three-Phase VSI with Star/Delta Load

  • Star Connected Load:

    • Phase voltage: \(V_{ph} = \dfrac{V_{line}}{\sqrt{3}}\)

    • Line current = Phase current: \(I_L = I_{ph}\)

    • Neutral current = 0 (for balanced load)

  • Delta Connected Load:

    • Phase voltage = Line voltage: \(V_{ph} = V_L\)

    • Line current: \(I_L = \sqrt{3} \times I_{ph}\)

    • No neutral connection required

  • Total Power: \(P = \sqrt{3} V_L I_L \cos\phi\)

Single-Phase Current Source Inverters

Single-Phase CSI Characteristics

  • Input: Stiff DC current source (high inductance)

  • Output: Controlled AC current (square wave)

  • Voltage: Determined by load: \(V_o = I_o \times Z_{load}\)

  • Configuration: Four thyristors in bridge + commutation capacitors

  • Commutation: Natural or forced commutation required

  • Output Current: \(I_o = \pm I_{dc}\)

  • RMS Output Current: \(I_{o,rms} = I_{dc}\)

  • Fundamental Current: \(I_{o1} = \dfrac{4I_{dc}}{\pi}\)

Single-Phase CSI Commutation

  • Commutation Capacitor: Pre-charged to reverse voltage

  • Turn-off Process: Reverse voltage turns off conducting thyristor

  • Current Transfer: From one thyristor to next

  • Commutation Time: \(t_c = \dfrac{C \times V_c}{I_{dc}}\)

  • Capacitor Sizing: \(C = \dfrac{I_{dc} \times t_c}{V_c}\)

  • Voltage Rating: \(V_c \geq 2 \times V_{load,max}\)

Three-Phase Current Source Inverters

Three-Phase CSI Configuration

  • Structure: Six thyristors + DC inductor + commutation capacitors

  • Switching Sequence: Six-step operation (\(60^{\circ}\) intervals)

  • Line Current RMS: \(I_{L,rms} = \dfrac{\sqrt{6}I_{dc}}{\pi}\)

  • Phase Current RMS: \(I_{ph,rms} = \dfrac{\sqrt{2}I_{dc}}{\pi}\)

  • Fundamental Line Current: \(I_{L1,rms} = \dfrac{3I_{dc}}{2\pi}\)

  • DC Inductor: \(L_{dc} = \dfrac{V_{dc}}{6f \times \Delta I_{dc}}\) (for \(<5\%\) ripple)

VSI vs CSI Comparison

Parameter VSI CSI
Input source Voltage source Current source
Output control Voltage Current
Switches IGBT/MOSFET Thyristors
Commutation Forced Natural/Forced
Reactive elements Freewheeling diodes Capacitors
Short circuit Catastrophic Tolerable
Open circuit Tolerable Catastrophic
Response time Fast Slow
Applications Low-medium power High power

Sinusoidal Pulse Width Modulation (SPWM)

SPWM Principle

  • Concept: Compare sinusoidal reference with triangular carrier

  • Switching Logic:

    • When \(V_{ref} > V_{carrier}\) \(\to\) Upper switch ON

    • When \(V_{ref} < V_{carrier}\) \(\to\) Lower switch ON

  • Modulation Index: \(m_a = \dfrac{V_{ref,peak}}{V_{carrier,peak}}\)

  • Frequency Ratio: \(m_f = \dfrac{f_{carrier}}{f_{ref}}\) (should be odd, \(>21\))

  • Switching Frequency: \(f_{sw} = f_{carrier}\)

  • Advantage: Low harmonic distortion, variable voltage control

SPWM Output Analysis

  • Linear Region (\(m_a \leq 1\)):

    • Full-bridge fundamental: \(V_{o1} = m_a \times V_{dc}\)

    • Half-bridge fundamental: \(V_{o1} = m_a \times \dfrac{V_{dc}}{2}\)

    • Linear relationship between \(m_a\) and output

  • Overmodulation (\(m_a > 1\)):

    • Non-linear relationship

    • Increased harmonic distortion

    • Maximum fundamental: \(V_{o1,max} = \dfrac{4V_{dc}}{\pi}\)

  • Harmonic Locations: At \(m_f \pm 1, m_f \pm 3, 2m_f \pm 1\), etc.

Bipolar vs Unipolar SPWM

  • Bipolar SPWM:

    • Output levels: \(+V_{dc}\) and \(-V_{dc}\)

    • Single reference signal

    • Fundamental: \(V_{o1} = m_a \times V_{dc}\)

  • Unipolar SPWM:

    • Output levels: \(+V_{dc}\), \(0\), and \(-V_{dc}\)

    • Two reference signals (\(180^{\circ}\) apart)

    • Better harmonic performance

    • Effective switching frequency: \(2f_c\)

  • Comparison: Unipolar has lower harmonic content but complex control

Three-Phase SPWM

  • Three Reference Signals:

    • \(v_{ref,a}(t) = V_m \sin(\omega t)\)

    • \(v_{ref,b}(t) = V_m \sin(\omega t - 120^{\circ})\)

    • \(v_{ref,c}(t) = V_m \sin(\omega t + 120^{\circ})\)

  • Common Triangular Carrier: at frequency \(f_c\)

  • Phase Voltage Fundamental: \(V_{ph1} = \dfrac{m_a V_{dc}}{2}\)

  • Line Voltage Fundamental: \(V_{L1} = \dfrac{\sqrt{3}}{2} m_a V_{dc}\)

  • Balanced Output: Inherent three-phase balance

GATE Exam Key Formulas

Single-Phase Inverter Formulas

  • Half-Bridge VSI:

    • RMS output: \(V_{o,rms} = \dfrac{V_{dc}}{2}\)

    • Fundamental: \(V_{o1} = \dfrac{2V_{dc}}{\pi}\)

  • Full-Bridge VSI:

    • RMS output: \(V_{o,rms} = V_{dc}\)

    • Fundamental: \(V_{o1} = \dfrac{4V_{dc}}{\pi}\)

  • Common Values:

    • THD = 48.34%

    • Distortion Factor = 0.9

Three-Phase Inverter Formulas

  • \(180^{\circ}\) Conduction Mode:

    • Line voltage RMS: \(V_{L,rms} = \dfrac{2\sqrt{3}V_{dc}}{\pi}\)

    • Phase voltage RMS: \(V_{ph,rms} = \dfrac{2V_{dc}}{\pi}\)

    • Fundamental line voltage: \(V_{L1,rms} = \dfrac{\sqrt{6}V_{dc}}{\pi}\)

  • \(120^{\circ}\) Conduction Mode:

    • Line voltage RMS: \(V_{L,rms} = \dfrac{\sqrt{6}V_{dc}}{\pi}\)

    • Phase voltage RMS: \(V_{ph,rms} = \dfrac{\sqrt{2}V_{dc}}{\pi}\)

SPWM and CSI Formulas

  • SPWM (Linear Region):

    • Modulation index: \(m_a = \dfrac{V_{ref}}{V_{carrier}}\)

    • Full-bridge output: \(V_{o1} = m_a \times V_{dc}\)

    • Three-phase line voltage: \(V_{L1} = \dfrac{\sqrt{3}}{2} m_a V_{dc}\)

  • Current Source Inverter:

    • Single-phase fundamental: \(I_{o1} = \dfrac{4I_{dc}}{\pi}\)

    • Three-phase line current: \(I_{L,rms} = \dfrac{\sqrt{6}I_{dc}}{\pi}\)

    • Commutation time: \(t_c = \dfrac{C \times V_c}{I_{dc}}\)

GATE Problem-Solving Tips

  • Key Steps:

    • Identify inverter type (VSI/CSI, single/three-phase)

    • Determine conduction mode (\(180^{\circ}/120^{\circ}\))

    • Apply appropriate formulas for RMS and fundamental

    • Consider load effects (R, RL, motor)

  • Common Question Types:

    • Output voltage/current calculations

    • Harmonic analysis (THD, distortion factor)

    • SPWM modulation index problems

    • Power calculations with different loads

  • Important Relations:

    • \(V_{line} = \sqrt{3} V_{phase}\) (star connection)

    • \(I_{line} = \sqrt{3} I_{phase}\) (delta connection)