Three-Phase Induction Motors GATE EE Exam Quick Notes

Fundamentals

Basic Principle

  • Rotating Magnetic Field (RMF): Created by 3-phase currents in stator

  • Synchronous Speed: \(N_s = \dfrac{120f}{P}\) rpm

  • Slip: \(s = \dfrac{N_s - N_r}{N_s}\) (Always positive for motor action)

  • Rotor Speed: \(N_r = N_s(1-s)\) rpm

  • Rotor Frequency: \(f_r = sf\)

  • Rotor EMF: \(E_r = sE_{r0}\) (At standstill \(E_{r0}\))

GATE Key Point

Operating Modes:
Motor: \(0 < s < 1\) (Normal operation)
Generator: \(s < 0\) (Supersynchronous, \(N_r > N_s\))
Brake: \(s > 1\) (Subsynchronous, \(N_r < 0\))

Construction Types

Types of 3-Phase Induction Motors

Squirrel Cage Type

  • Rotor bars + end rings (aluminum/copper)

  • Robust, maintenance-free

  • Self-starting

  • Fixed rotor resistance

  • Lower cost

  • 90% of industrial applications

Wound Rotor Type

  • 3-phase rotor windings

  • Slip rings + carbon brushes

  • External resistance control

  • Higher starting torque

  • Speed control possible

  • Higher maintenance cost

GATE Focus

Questions mostly on squirrel cage motors due to widespread use

Equivalent Circuit

Per-Phase Equivalent Circuit

Circuit Parameters:

  • \(R_1, X_1\): Stator resistance and leakage reactance

  • \(R_c\): Core loss resistance (iron losses)

  • \(X_m\): Magnetizing reactance

  • \(R_2', X_2'\): Rotor resistance and reactance referred to stator

  • \(\dfrac{R_2'}{s}\): Total rotor branch resistance

Referring Rotor to Stator:

\[\begin{aligned} R_2' &= R_2 \left(\dfrac{N_1}{N_2}\right)^2 = R_2 K^2\\ X_2' &= X_2 \left(\dfrac{N_1}{N_2}\right)^2 = X_2 K^2\\ I_2' &= I_2 \left(\dfrac{N_2}{N_1}\right) = \dfrac{I_2}{K} \end{aligned}\]

Power Flow Analysis

Power Flow Sequence:

\[\begin{aligned} P_{input} &\rightarrow P_{stator\ losses} \rightarrow P_{air-gap} \rightarrow P_{rotor\ losses} \rightarrow P_{mechanical} \rightarrow P_{output} \end{aligned}\]

Power Relations:

  • Input Power: \(P_{in} = \sqrt{3}V_L I_L \cos\phi\)

  • Stator Losses: \(P_{stator} = 3I_1^2 R_1 + P_{core}\)

  • Air-gap Power: \(P_{ag} = P_{in} - P_{stator}\)

  • Rotor Copper Loss: \(P_{rcl} = sP_{ag} = 3I_2'^2 R_2'\)

  • Mechanical Power: \(P_{mech} = (1-s)P_{ag}\)

  • Output Power: \(P_{out} = P_{mech} - P_{friction+windage}\)

GATE Key Formula

\(P_{ag} : P_{rcl} : P_{mech} = 1 : s : (1-s)\)

Torque Characteristics

Torque Equations

General Torque Equation:

\[T = \dfrac{3V_1^2 R_2'}{2\pi N_s} \cdot \dfrac{s}{(R_1 + R_2')^2 + s^2(X_1 + X_2')^2}\]

Approximate (when \(R_1 \ll X_1 + X_2'\)):

\[T = \dfrac{3V_1^2 R_2'}{2\pi N_s} \cdot \dfrac{s}{R_1^2 + s^2(X_1 + X_2')^2}\]

Alternative Form:

\[T = \dfrac{P_{ag}}{2\pi N_s/60} = \dfrac{P_{ag} \times 60}{2\pi N_s}\]

From Mechanical Power:

\[T = \dfrac{P_{mech} \times 60}{2\pi N_r} = \dfrac{(1-s)P_{ag} \times 60}{2\pi N_s(1-s)} = \dfrac{P_{ag} \times 60}{2\pi N_s}\]

Maximum Torque Analysis

Maximum Torque:

\[T_{max} = \dfrac{3V_1^2}{4\pi N_s(X_1 + X_2')} \text{ (independent of } R_2' \text{)}\]

Slip at Maximum Torque:

\[s_m = \dfrac{R_2'}{\sqrt{R_1^2 + (X_1 + X_2')^2}} \approx \dfrac{R_2'}{X_1 + X_2'}\]

Starting Torque:

\[T_{st} = \dfrac{3V_1^2 R_2'}{2\pi N_s[(R_1 + R_2')^2 + (X_1 + X_2')^2]}\]

Torque-Slip Relation:

\[\dfrac{T}{T_{max}} = \dfrac{2s/s_m}{s/s_m + s_m/s}\]

GATE Important Points

  • \(T_{max}\) is independent of rotor resistance

  • \(s_m\) is proportional to rotor resistance

  • For low slip: \(T \propto s\) (stable operation)

Motor Testing

No-Load Test

Purpose: Determine shunt parameters and losses

Procedure: Motor at rated voltage, no mechanical load

Measurements: \(V_0\), \(I_0\), \(P_0\)

Calculations:

\[\begin{aligned} \cos\phi_0 &= \dfrac{P_0}{\sqrt{3}V_0 I_0}\\ I_c &= I_0 \cos\phi_0 \text{ (core loss component)}\\ I_m &= I_0 \sin\phi_0 \text{ (magnetizing component)}\\ R_c &= \dfrac{V_0}{\sqrt{3}I_c}\\ X_m &= \dfrac{V_0}{\sqrt{3}I_m} \end{aligned}\]

GATE Note

\(P_0 =\) Core losses + Friction & windage losses
(Rotor copper loss \(\approx 0\) since slip is very small)

Blocked Rotor Test

Purpose: Determine series parameters

Procedure: Rotor blocked, reduced voltage applied (15-25% of rated)

Measurements: \(V_{br}\), \(I_{br}\), \(P_{br}\)

Calculations:

\[\begin{aligned} R_{eq} &= R_1 + R_2' = \dfrac{P_{br}}{3I_{br}^2}\\ Z_{eq} &= \dfrac{V_{br}}{\sqrt{3}I_{br}}\\ X_{eq} &= X_1 + X_2' = \sqrt{Z_{eq}^2 - R_{eq}^2} \end{aligned}\]

Typical Parameter Distribution

\(R_1 = R_2' = \dfrac{R_{eq}}{2}\) and \(X_1 = X_2' = \dfrac{X_{eq}}{2}\)
(For wound rotor: \(R_1 = 0.4R_{eq}\), \(R_2' = 0.6R_{eq}\))

Starting Methods

Starting Methods - Squirrel Cage

1. Direct-On-Line (DOL)

  • \(I_{st} = 5-8 \times I_{fl}\)

  • \(T_{st} = 1.5-2.5 \times T_{fl}\)

  • Simple and economical

  • High starting current

2. Star-Delta Starter

  • \(I_{line} = \dfrac{I_{DOL}}{3}\)

  • \(T_{st} = \dfrac{T_{DOL}}{3}\)

  • Motor must be delta-connected

  • 6 terminals required

3. Auto-transformer Starter

  • \(I_{line} = \dfrac{I_{DOL}}{k^2}\)

  • \(T_{st} = \dfrac{T_{DOL}}{k^2}\)

  • Better torque per ampere

  • Tapping ratio \(k = 0.5, 0.65, 0.8\)

4. Rotor Resistance (Wound Rotor)

  • External resistance in rotor

  • High starting torque

  • Smooth acceleration

  • Power loss in resistances

GATE Comparison

Auto-transformer starter gives better performance than star-delta

Speed Control

Speed Control Methods

1. Frequency Control (VFD - Most Efficient)

  • \(N_s = \dfrac{120f}{P}\)

  • Constant V/f ratio maintained below base speed

  • Constant flux operation

  • Wide speed range with high efficiency

2. Voltage Control (Stator Voltage)

  • \(T \propto V^2\) (at constant slip)

  • Limited speed range (only speed reduction)

  • Poor efficiency at reduced speeds

  • Used for fan/pump applications

3. Pole Changing

  • Discrete speed steps

  • Consequent pole method: speeds in ratio 1:2

  • PAM (pole amplitude modulation) method

4. Rotor Resistance Control (Wound Rotor Only)

  • Speed below synchronous speed only

  • High slip operation (inefficient)

  • Stepless speed control

Losses and Efficiency

Efficiency Analysis

Total Losses:

\[\begin{aligned} P_{total\ losses} &= P_{stator\ Cu} + P_{core} + P_{rotor\ Cu} + P_{mechanical}\\ &= 3I_1^2 R_1 + P_{core} + 3I_2'^2 R_2' + P_{friction+windage} \end{aligned}\]

Efficiency:

\[\eta = \dfrac{P_{out}}{P_{in}} = \dfrac{P_{out}}{P_{out} + P_{losses}} = \dfrac{P_{in} - P_{losses}}{P_{in}}\]

Condition for Maximum Efficiency:

\[\text{Variable losses} = \text{Constant losses}\]
\[3I_1^2 R_1 + 3I_2'^2 R_2' = P_{core} + P_{friction+windage}\]

GATE Important

Maximum efficiency occurs when copper losses equal constant losses

Important Formulas

Key Formulas for GATE

Basic Relations:

\[\begin{aligned} N_s &= \dfrac{120f}{P} \text{ rpm}\\ s &= \dfrac{N_s - N_r}{N_s}\\ N_r &= N_s(1-s) \text{ rpm}\\ f_r &= sf\\ E_r &= sE_{r0} \end{aligned}\]

Power Relations:

\[\begin{aligned} P_{ag} &= P_{in} - P_{stator\ losses}\\ P_{rcl} &= sP_{ag}\\ P_{mech} &= (1-s)P_{ag}\\ P_{out} &= P_{mech} - P_{mech\ losses} \end{aligned}\]

Torque Relations:

\[\begin{aligned} T &= \dfrac{P_{ag} \times 60}{2\pi N_s}\\ T_{max} &= \dfrac{3V_1^2}{4\pi N_s(X_1 + X_2')}\\ s_m &= \dfrac{R_2'}{X_1 + X_2'}\\ T_{st} &= \dfrac{3V_1^2 R_2'}{2\pi N_s[(R_1 + R_2')^2 + (X_1 + X_2')^2]} \end{aligned}\]

Starting Method Ratios:

\[\begin{aligned} \text{Star-Delta: } &I_{st} = \dfrac{I_{DOL}}{3}, \quad T_{st} = \dfrac{T_{DOL}}{3}\\ \text{Auto-transformer: } &I_{st} = \dfrac{I_{DOL}}{k^2}, \quad T_{st} = \dfrac{T_{DOL}}{k^2} \end{aligned}\]

Problem Solving Tips

GATE Problem-Solving Strategy

Power Flow Problems

  1. Always identify: \(P_{in} \rightarrow P_{stator} \rightarrow P_{ag} \rightarrow P_{rcl} \rightarrow P_{mech} \rightarrow P_{out}\)

  2. Use: \(P_{rcl} = sP_{ag}\) and \(P_{mech} = (1-s)P_{ag}\)

  3. Remember: \(P_{ag} : P_{rcl} : P_{mech} = 1 : s : (1-s)\)

Torque Problems

  1. For maximum torque: \(T_{max}\) is independent of \(R_2'\)

  2. For slip at maximum torque: \(s_m \propto R_2'\)

  3. Use \(T = \dfrac{P_{ag} \times 60}{2\pi N_s}\) for quick calculation

Testing Problems

  1. No-load test: Find \(X_m\), \(R_c\), and constant losses

  2. Blocked rotor test: Find \(R_{eq}\), \(X_{eq}\)

  3. Use standard assumptions for parameter distribution

Common GATE Mistakes

Avoid These Errors

  • Confusing slip \(s\) with rotor speed \(N_r\)

  • Wrong sequence in power flow analysis

  • Forgetting to refer rotor parameters to stator side

  • Using wrong torque formula (mechanical power vs air-gap power)

  • Mixing up starting current ratios for different methods

Quick Verification Checks

  • For motor operation: \(0 < s < 1\)

  • Air-gap power \(>\) Mechanical power \(>\) Output power

  • Rotor copper loss decreases with increasing load

  • At no-load: slip is minimum (\(\approx 0.005-0.01\))

  • At full-load: slip is typically 0.03-0.05

Typical GATE Questions Pattern

High Probability Topics

  • Power flow analysis and efficiency calculation

  • Torque-slip characteristics and maximum torque

  • Starting methods comparison (especially star-delta)

  • Equivalent circuit parameter determination

  • Speed control methods and their characteristics

Numerical Problem Types

  • Given slip, find rotor speed, frequency, and losses

  • Calculate starting torque and current for different methods

  • Determine efficiency and losses at given loading

  • Find equivalent circuit parameters from test data

  • Compare performance of different speed control methods

Quick Reference

Most Important Relations

\[\begin{aligned} s &= \dfrac{N_s - N_r}{N_s}, \quad N_r = N_s(1-s)\\ P_{ag} : P_{rcl} : P_{mech} &= 1 : s : (1-s)\\ T &= \dfrac{P_{ag} \times 60}{2\pi N_s}\\ T_{max} &= \dfrac{3V_1^2}{4\pi N_s(X_1 + X_2')}\\ s_m &= \dfrac{R_2'}{X_1 + X_2'} \end{aligned}\]

Starting Method Quick Facts

  • Star-Delta: \(I, T\) both reduce by factor 3

  • Auto-transformer: \(I, T\) both reduce by factor \(k^2\)

  • DOL: Highest current, moderate torque

  • Rotor resistance: High torque, smooth starting