Electrostatics (Brief Review)
Electrostatics - Key Formulas
-
Coulomb’s Law: \(\mathbf{F} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \hat{r}\)
-
Electric Field: \(\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}\)
-
Gauss’s Law: \(\oint \mathbf{E} \cdot d\mathbf{A} = \frac{Q_{\text{enc}}}{\epsilon_0}\)
-
Electric Potential: \(V = -\int \mathbf{E} \cdot d\mathbf{l}\)
-
Capacitance: \(C = \frac{Q}{V}\), for parallel plate: \(C = \frac{\epsilon_0 A}{d}\)
Magnetostatics
Biot-Savart’s Law
-
Fundamental Law: Magnetic field due to current element:
\[d\mathbf{B} = \frac{\mu_0}{4\pi} \frac{I d\mathbf{l} \times \hat{r}}{r^2}\] -
Key Points:
-
Direction: Right-hand rule
-
Magnitude: \(|d\mathbf{B}| = \frac{\mu_0 I dl \sin\theta}{4\pi r^2}\)
-
Units: Tesla (T)
-
-
Applications: Straight wire, circular loop, finite wire segments
Biot-Savart’s Law - Important Results
-
Infinite straight wire:
\[B = \frac{\mu_0 I}{2\pi r}\] -
Circular loop at center:
\[B = \frac{\mu_0 I}{2R}\] -
Circular loop on axis:
\[B = \frac{\mu_0 I R^2}{2(R^2 + z^2)^{3/2}}\] -
Finite wire: Complex integral - use standard results
Ampere’s Law
-
Statement: Line integral of magnetic field equals enclosed current:
\[\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_{\text{enc}}\] -
Conditions for Application:
-
High degree of symmetry
-
Closed Amperian loop
-
Constant \(|\mathbf{B}|\) along chosen path
-
-
Sign Convention: Current direction by right-hand rule
Ampere’s Law - Applications
-
Solenoid (inside):
\[B = \mu_0 n I = \mu_0 \frac{N}{l} I\]where \(n\) is turns per unit length -
Toroid:
\[B = \frac{\mu_0 N I}{2\pi r}\] -
Coaxial cable: Between conductors
-
Current sheet: \(B = \frac{\mu_0 K}{2}\) where \(K\) is surface current density
Curl of Magnetic Field
-
Definition: Differential form of Ampere’s law:
\[\nabla \times \mathbf{B} = \mu_0 \mathbf{J}\] -
Physical Meaning: Circulation of \(\mathbf{B}\) per unit area
-
Cartesian Form:
\[\nabla \times \mathbf{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ B_x & B_y & B_z \end{vmatrix}\] -
Important: \(\nabla \times \mathbf{B} = 0\) in current-free regions
Curl in Other Coordinate Systems
-
Cylindrical:
\[\nabla \times \mathbf{B} = \left(\frac{1}{\rho}\frac{\partial B_z}{\partial \phi} - \frac{\partial B_\phi}{\partial z}\right)\hat{\rho} + \left(\frac{\partial B_\rho}{\partial z} - \frac{\partial B_z}{\partial \rho}\right)\hat{\phi} + \frac{1}{\rho}\left(\frac{\partial(\rho B_\phi)}{\partial \rho} - \frac{\partial B_\rho}{\partial \phi}\right)\hat{z}\] -
Spherical:
\[\nabla \times \mathbf{B} = \frac{1}{r\sin\theta}\left(\frac{\partial B_\phi}{\partial \theta} - \frac{\partial(\sin\theta B_\theta)}{\partial \phi}\right)\hat{r} + \cdots\] -
GATE Tip: Use symmetry to simplify calculations
Magnetomotive Force (MMF)
-
Definition: Driving force for magnetic flux
\[\text{MMF} = N I \text{ (Ampere-turns)}\] -
Physical Analogy: Like EMF in electric circuits
-
Applications:
-
Solenoids: MMF = Number of turns × Current
-
Transformers: Primary and secondary MMF
-
Electric machines: Stator and rotor MMF
-
-
Unit: Ampere-turns (AT)
Reluctance
-
Definition: Opposition to magnetic flux
\[\mathcal{R} = \frac{l}{\mu A} = \frac{l}{\mu_0 \mu_r A}\] -
Parameters:
-
\(l\): Length of magnetic path
-
\(\mu\): Permeability (\(\mu = \mu_0 \mu_r\))
-
\(A\): Cross-sectional area
-
-
Unit: Henry\(^{-1}\) (H\(^{-1}\))
-
Analogy: Resistance in electric circuits
Reluctance - Key Points
-
Series Reluctances: \(\mathcal{R}_{\text{total}} = \mathcal{R}_1 + \mathcal{R}_2 + \cdots\)
-
Parallel Reluctances: \(\frac{1}{\mathcal{R}_{\text{total}}} = \frac{1}{\mathcal{R}_1} + \frac{1}{\mathcal{R}_2} + \cdots\)
-
Air Gap Effect: High reluctance due to \(\mu_r = 1\)
-
Ferromagnetic Materials: Low reluctance due to high \(\mu_r\)
-
GATE Tip: Most flux passes through low reluctance path
Magnetic Circuits
-
Ohm’s Law for Magnetic Circuits:
\[\Phi = \frac{\text{MMF}}{\mathcal{R}} = \frac{NI}{\mathcal{R}}\] -
Analogies with Electric Circuits:
Electric Magnetic Current (I) Flux (\(\Phi\)) Voltage (V) MMF (NI) Resistance (R) Reluctance (\(\mathcal{R}\)) Conductivity Permeability
Magnetic Circuits - Analysis Steps
-
Identify: Magnetic path and cross-sections
-
Calculate: Reluctance of each section
\[\mathcal{R}_i = \frac{l_i}{\mu_i A_i}\] -
Find: Total reluctance (series/parallel combination)
-
Apply: Ohm’s law for magnetic circuits
\[\Phi = \frac{\text{MMF}}{\mathcal{R}_{\text{total}}}\] -
Calculate: Flux density \(B = \frac{\Phi}{A}\)
Magnetic Circuits - Applications
-
Transformers:
-
Core reluctance
-
Air gap effects
-
Leakage flux
-
-
Inductors:
-
Energy storage
-
Inductance calculation
-
-
Electric Machines:
-
Motor and generator analysis
-
Magnetic field distribution
-
Maxwell’s Equations
Maxwell’s Equations - Complete Set
-
Gauss’s Law (Electric):
\[\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} \quad \text{or} \quad \oint \mathbf{E} \cdot d\mathbf{A} = \frac{Q_{\text{enc}}}{\epsilon_0}\] -
Gauss’s Law (Magnetic):
\[\nabla \cdot \mathbf{B} = 0 \quad \text{or} \quad \oint \mathbf{B} \cdot d\mathbf{A} = 0\] -
Faraday’s Law:
\[\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \quad \text{or} \quad \oint \mathbf{E} \cdot d\mathbf{l} = -\frac{d\Phi_B}{dt}\] -
Ampere-Maxwell Law:
\[\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}\]
Boundary Conditions
Boundary Conditions for EM Fields
-
Electric Field:
-
Normal component: \(D_{1n} - D_{2n} = \sigma_s\)
-
Tangential component: \(E_{1t} = E_{2t}\)
-
-
Magnetic Field:
-
Normal component: \(B_{1n} = B_{2n}\)
-
Tangential component: \(H_{1t} - H_{2t} = J_s\)
-
-
GATE Applications: Dielectric interfaces, conductor boundaries
GATE Problem-Solving Tips
GATE Strategy for Magnetostatics
-
Identify Symmetry: Choose appropriate law (Biot-Savart vs Ampere)
-
Current Configurations:
-
Straight wire \(\to\) Biot-Savart or Ampere
-
Circular loop \(\to\) Biot-Savart
-
Solenoid/Toroid \(\to\) Ampere’s law
-
-
Magnetic Circuits: Draw equivalent circuit, calculate reluctances
-
Common Mistakes: Sign errors, wrong coordinate systems
-
Units: Always check dimensional consistency
Summary - Key Points to Remember
-
Biot-Savart’s Law: For any current configuration
-
Ampere’s Law: For symmetric configurations only
-
Curl: \(\nabla \times \mathbf{B} = \mu_0 \mathbf{J}\) in magnetostatics
-
MMF: Driving force for magnetic flux (NI)
-
Reluctance: Opposition to flux \(\left(\frac{l}{\mu A}\right)\)
-
Magnetic Circuits: Use electrical circuit analogy
-
Practice: Solve problems with different geometries
Focus on understanding physical concepts and mathematical relationships!
Final Tips for GATE Success
-
Master the Fundamentals: Understand derivations, not just formulas
-
Practice Numerical Problems: Time management is crucial
-
Vector Calculus: Strong foundation in div, curl, gradient
-
Coordinate Systems: Comfortable with Cartesian, cylindrical, spherical
-
Symmetry Arguments: Often simplify complex problems