Coulomb’s Law
Coulomb’s Law
-
Force between two point charges:
\[\mathbf{F} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \hat{r} = k \frac{q_1 q_2}{r^2} \hat{r}\] -
\(k = \frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \, \text{N.m^2/C^2}\)
-
\(\epsilon_0 = 8.854 \times 10^{-12} \, \text{F/m}\) (permittivity of free space)
-
Key Points:
-
Inverse square law
-
Like charges repel, unlike charges attract
-
Superposition principle applies
-
Electric Field Intensity
Electric Field Intensity
-
Electric field due to a point charge:
\[\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}\] -
Superposition principle: \(\mathbf{E}_{\text{total}} = \sum \mathbf{E}_i\)
-
Units: N/C or V/m
-
For continuous charge distributions:
\[\mathbf{E} = \frac{1}{4\pi\epsilon_0} \int \frac{dq}{r^2} \hat{r}\] -
Direction: Away from positive, towards negative charges
Electric Flux Density
Electric Flux Density
-
Defined as: \(\mathbf{D} = \epsilon_0 \mathbf{E}\) (in vacuum)
-
In dielectric medium: \(\mathbf{D} = \epsilon \mathbf{E} = \epsilon_0 \epsilon_r \mathbf{E}\)
-
Units: C/m2
-
Key Properties:
-
Independent of medium properties
-
Continuous across dielectric boundaries
-
Useful in Gauss’s Law applications
-
-
Electric flux: \(\Phi = \int \mathbf{D} \cdot d\mathbf{S}\)
Gauss’s Law
Gauss’s Law
-
Integral form: \(\oint \mathbf{D} \cdot d\mathbf{S} = Q_{\text{enc}}\)
-
Differential form: \(\nabla \cdot \mathbf{D} = \rho\)
-
For vacuum: \(\oint \mathbf{E} \cdot d\mathbf{S} = \frac{Q_{\text{enc}}}{\epsilon_0}\)
-
Applications:
-
Spherical symmetry: Choose spherical Gaussian surface
-
Cylindrical symmetry: Choose cylindrical Gaussian surface
-
Planar symmetry: Choose box-shaped Gaussian surface
-
-
GATE Tip: Always exploit symmetry!
Divergence
Divergence
-
Measures field’s divergence from a point:
\[\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} \quad \text{and} \quad \nabla \cdot \mathbf{D} = \rho\] -
In Cartesian coordinates:
\[\nabla \cdot \mathbf{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z}\] -
Physical interpretation: Source/sink of field lines
-
Key Point: Positive divergence = source, Negative = sink
Electric Field and Potential
Point Charge Distribution
-
Potential: \(V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}\)
-
Electric field: \(\mathbf{E} = -\nabla V = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}\)
-
For multiple point charges:
\[V = \frac{1}{4\pi\epsilon_0} \sum_i \frac{q_i}{r_i}\] -
Key Relations:
-
\(\mathbf{E} = -\nabla V\)
-
\(V = -\int \mathbf{E} \cdot d\mathbf{l}\)
-
Work done: \(W = q(V_f - V_i)\)
-
Line Charge Distribution
-
Linear charge density: \(\lambda = \frac{dq}{dl}\)
-
For infinite line charge along z-axis:
\[\mathbf{E} = \frac{\lambda}{2\pi\epsilon_0 \rho} \hat{\rho} \quad \text{(cylindrical coords)}\] -
Potential (reference at \(\rho = \rho_0\)):
\[V = \frac{\lambda}{2\pi\epsilon_0} \ln\left(\frac{\rho_0}{\rho}\right)\] -
GATE Note: Potential reference point is crucial!
Plane Charge Distribution
-
Surface charge density: \(\sigma = \frac{dq}{dS}\)
-
For infinite plane sheet:
\[\mathbf{E} = \frac{\sigma}{2\epsilon_0} \hat{n}\] -
Field is uniform and perpendicular to plane
-
Potential: \(V = -\frac{\sigma}{2\epsilon_0} |z|\) (for sheet at z=0)
-
Two parallel plates:
\[\mathbf{E} = \frac{\sigma}{\epsilon_0} \hat{n} \quad \text{(between plates)}\]
Spherical Charge Distribution
-
Volume charge density: \(\rho = \frac{dq}{dV}\)
-
For uniform sphere of radius \(a\):
-
Outside sphere (\(r > a\)):
\[\mathbf{E} = \frac{Q}{4\pi\epsilon_0 r^2} \hat{r}, \quad V = \frac{Q}{4\pi\epsilon_0 r}\] -
Inside sphere (\(r < a\)):
\[\mathbf{E} = \frac{Qr}{4\pi\epsilon_0 a^3} \hat{r}, \quad V = \frac{Q}{4\pi\epsilon_0 a}\left(\frac{3}{2} - \frac{r^2}{2a^2}\right)\] -
At surface (\(r = a\)): \(V = \frac{Q}{4\pi\epsilon_0 a}\)
Effect of Dielectric Medium
Effect of Dielectric Medium
-
Dielectric reduces electric field:
\[\mathbf{D} = \epsilon \mathbf{E} = \epsilon_0 \epsilon_r \mathbf{E}\] -
\(\epsilon_r\): Relative permittivity (dielectric constant)
-
Polarization vector: \(\mathbf{P} = \epsilon_0 (\epsilon_r - 1) \mathbf{E}\)
-
Relationship: \(\mathbf{D} = \epsilon_0 \mathbf{E} + \mathbf{P}\)
-
Boundary Conditions:
-
Normal component: \(D_{1n} - D_{2n} = \sigma_s\)
-
Tangential component: \(E_{1t} - E_{2t} = 0\)
-
Dielectric Boundary Conditions
-
No free surface charge (\(\sigma_s = 0\)):
-
\(D_{1n} = D_{2n}\) (normal D continuous)
-
\(E_{1t} = E_{2t}\) (tangential E continuous)
-
-
Refraction of field lines:
\[\frac{\tan \theta_1}{\tan \theta_2} = \frac{\epsilon_1}{\epsilon_2}\] -
GATE Application: Capacitor with multiple dielectrics
-
Fields in different media related by permittivity ratios
Capacitance
Capacitance of Simple Configurations
-
Definition: \(C = \frac{Q}{V}\), Units: F (Farad)
-
Parallel plate capacitor:
\[C = \frac{\epsilon A}{d} = \frac{\epsilon_0 \epsilon_r A}{d}\] -
Cylindrical capacitor: (inner radius \(a\), outer radius \(b\))
\[C = \frac{2\pi\epsilon l}{\ln(b/a)}\] -
Spherical capacitor: (inner radius \(a\), outer radius \(b\))
\[C = 4\pi\epsilon \frac{ab}{b-a}\]
Capacitance - Special Cases & Combinations
-
Isolated conducting sphere: \(C = 4\pi\epsilon a\)
-
Effect of dielectric: \(C_{\text{new}} = \epsilon_r C_{\text{air}}\)
-
Series combination: \(\frac{1}{C_{\text{eq}}} = \frac{1}{C_1} + \frac{1}{C_2} + \ldots\)
-
Parallel combination: \(C_{\text{eq}} = C_1 + C_2 + \ldots\)
-
Energy stored: \(U = \frac{1}{2}CV^2 = \frac{1}{2}QV = \frac{Q^2}{2C}\)
-
Energy density: \(u = \frac{1}{2}\epsilon E^2\)
Important Formulas - Quick Reference
-
Coulomb’s Law: \(\mathbf{F} = \frac{q_1 q_2}{4\pi\epsilon_0 r^2} \hat{r}\)
-
Electric Field: \(\mathbf{E} = \frac{q}{4\pi\epsilon_0 r^2} \hat{r}\), \(\mathbf{E} = -\nabla V\)
-
Gauss’s Law: \(\oint \mathbf{D} \cdot d\mathbf{S} = Q_{\text{enc}}\), \(\nabla \cdot \mathbf{D} = \rho\)
-
Potential: \(V = -\int \mathbf{E} \cdot d\mathbf{l}\)
-
Capacitance: \(C = \frac{Q}{V}\)
-
Dielectric: \(\mathbf{D} = \epsilon \mathbf{E}\), \(\mathbf{P} = \epsilon_0(\epsilon_r-1)\mathbf{E}\)
-
Energy: \(U = \frac{1}{2}CV^2\), \(u = \frac{1}{2}\epsilon E^2\)
GATE Exam Strategy
Key Tips for GATE Success
-
Symmetry is your friend: Always look for spherical, cylindrical, or planar symmetry
-
Boundary conditions: Master dielectric interface problems
-
Superposition: Use for multiple charge configurations
-
Units & Dimensions: Double-check your final answers
-
Common mistakes: Sign errors, wrong reference points for potential
-
Practice: Solve previous year questions extensively
Summary
-
Coulomb’s Law: Foundation for all electrostatic problems
-
Electric Field & Potential: Key for charge distributions
-
Gauss’s Law: Powerful tool for symmetric problems
-
Divergence: Links field to charge density
-
Dielectrics: Modify fields and increase capacitance
-
Capacitance: Essential for energy storage problems