Digital Circuits GATE Exam Quick Notes

Number Systems and Codes

Number Systems

  • Binary: Base 2 (0,1)

  • Octal: Base 8 (0-7)

  • Hexadecimal: Base 16 (0-9, A-F)

  • Conversion: Binary \(\leftrightarrow\) Decimal \(\leftrightarrow\) Octal \(\leftrightarrow\) Hex

  • Signed representations: Sign-magnitude, 1’s complement, 2’s complement

  • 2’s complement: Most common for negative numbers

  • Range: For n-bit 2’s complement: \(-2^{n-1}\) to \(2^{n-1}-1\)

Important Codes

  • BCD (Binary Coded Decimal): Each decimal digit → 4 bits

  • Gray Code: Adjacent codes differ by 1 bit only

  • Excess-3 Code: BCD + 3, self-complementing

  • ASCII: 7-bit character encoding

  • Error Detection: Parity bits (even/odd)

  • Hamming Code: Error detection and correction

  • Hamming Distance: Minimum distance for error detection = d+1, correction = 2d+1

Floating Point Representation

  • IEEE 754 Standard: Single (32-bit) and Double (64-bit) precision

  • Single Precision: 1 sign + 8 exponent + 23 mantissa bits

  • Double Precision: 1 sign + 11 exponent + 52 mantissa bits

  • Normalized Form: \((-1)^S \times 1.M \times 2^{E-127}\) (single precision)

  • Bias: 127 for single, 1023 for double precision

  • Special Cases: Zero, Infinity, NaN (Not a Number)

Boolean Algebra

Boolean Algebra Fundamentals

  • Basic Operations: AND (\(\cdot\)), OR (\(+\)), NOT (\(\overline{A}\))

  • Commutative: \(A + B = B + A\), \(A \cdot B = B \cdot A\)

  • Associative: \((A + B) + C = A + (B + C)\)

  • Distributive: \(A(B + C) = AB + AC\), \(A + BC = (A+B)(A+C)\)

  • Identity: \(A + 0 = A\), \(A \cdot 1 = A\)

  • Complement: \(A + \overline{A} = 1\), \(A \cdot \overline{A} = 0\)

  • Idempotent: \(A + A = A\), \(A \cdot A = A\)

De Morgan’s Laws and Simplification

  • De Morgan’s Laws:

    • \(\overline{A + B} = \overline{A} \cdot \overline{B}\)

    • \(\overline{A \cdot B} = \overline{A} + \overline{B}\)

  • Absorption Laws:

    • \(A + AB = A\)

    • \(A(A + B) = A\)

  • Consensus Theorem: \(AB + \overline{A}C + BC = AB + \overline{A}C\)

  • Duality: Replace AND with OR, OR with AND, 0 with 1, 1 with 0

Logic Gates

Basic Logic Gates

  • AND Gate: Output = 1 only when all inputs = 1

  • OR Gate: Output = 1 when any input = 1

  • NOT Gate: Output = complement of input

  • NAND Gate: NOT-AND, Universal gate

  • NOR Gate: NOT-OR, Universal gate

  • XOR Gate: Exclusive OR, output = 1 when inputs differ

  • XNOR Gate: Exclusive NOR, output = 1 when inputs same

Universal Gates

  • NAND as Universal Gate:

    • NOT: \(\overline{A} = A \uparrow A\)

    • AND: \(A \cdot B = \overline{(A \uparrow A) \uparrow (B \uparrow B)}\)

    • OR: \(A + B = (A \uparrow A) \uparrow (B \uparrow B)\)

  • NOR as Universal Gate:

    • NOT: \(\overline{A} = A \downarrow A\)

    • OR: \(A + B = \overline{(A \downarrow A) \downarrow (B \downarrow B)}\)

    • AND: \(A \cdot B = (A \downarrow A) \downarrow (B \downarrow B)\)

Combinational Logic Circuits

Karnaugh Maps (K-Maps)

  • Purpose: Simplify Boolean expressions graphically

  • Gray Code Ordering: Adjacent cells differ by 1 bit

  • Grouping Rules:

    • Group 1s for SOP (Sum of Products)

    • Group 0s for POS (Product of Sums)

    • Groups must be powers of 2 (1, 2, 4, 8, 16)

    • Larger groups give simpler expressions

  • Don’t Cares (X): Can be treated as 0 or 1 for optimization

  • Prime Implicants: Largest possible groups

  • Essential Prime Implicants: Must be included in final expression

Adders

  • Half Adder: Adds two 1-bit numbers

    • Sum = \(A \oplus B\)

    • Carry = \(A \cdot B\)

  • Full Adder: Adds three 1-bit numbers (A, B, Cin)

    • Sum = \(A \oplus B \oplus C_{in}\)

    • Carry = \(AB + C_{in}(A \oplus B)\)

  • Ripple Carry Adder: Cascade of full adders

  • Carry Look-ahead Adder: Faster addition using generate/propagate

Subtractors

  • Half Subtractor: Subtracts two 1-bit numbers

    • Difference = \(A \oplus B\)

    • Borrow = \(\overline{A} \cdot B\)

  • Full Subtractor: Subtracts with borrow input

    • Difference = \(A \oplus B \oplus B_{in}\)

    • Borrow = \(\overline{A}B + B_{in}(\overline{A \oplus B})\)

  • 2’s Complement Subtraction: \(A - B = A + \overline{B} + 1\)

Multiplexers (MUX)

  • Function: Select one of many inputs based on select lines

  • 2:1 MUX: 2 inputs, 1 select line

    • \(Y = \overline{S} \cdot I_0 + S \cdot I_1\)

  • 4:1 MUX: 4 inputs, 2 select lines

  • 8:1 MUX: 8 inputs, 3 select lines

  • Function Implementation: Can implement any Boolean function

  • Expansion: Smaller MUX can build larger MUX

Demultiplexers and Decoders

  • DEMUX Function: Route single input to one of many outputs

  • 1:2 DEMUX: 1 input, 2 outputs, 1 select line

  • Decoder: \(n\) inputs → \(2^n\) outputs

    • 2:4 decoder, 3:8 decoder

    • Only one output active at a time

  • Encoder: \(2^n\) inputs → \(n\) outputs

    • 4:2 encoder, 8:3 encoder

    • Priority encoder handles multiple inputs

Comparators

  • 1-bit Comparator: Compare two 1-bit numbers

    • \(A > B\): \(A \cdot \overline{B}\)

    • \(A = B\): \(A \odot B\) (XNOR)

    • \(A < B\): \(\overline{A} \cdot B\)

  • Multi-bit Comparator: Cascade 1-bit comparators

  • Magnitude Comparator: Compare magnitudes of binary numbers

Sequential Logic Circuits

Latches

  • SR Latch: Set-Reset using NOR gates

    • S=1, R=0: Set (Q=1)

    • S=0, R=1: Reset (Q=0)

    • S=R=1: Invalid state

    • S=R=0: No change

  • Gated SR Latch: SR latch with enable

  • D Latch: Data latch, eliminates invalid state

    • \(D = S\), \(\overline{D} = R\)

  • Level-triggered: Output follows input when enabled

Flip-Flops

  • Edge-triggered: Change state on clock edge

  • D Flip-Flop: Data flip-flop

    • \(Q^+ = D\)

  • JK Flip-Flop: J=Set, K=Reset

    • \(Q^+ = J\overline{Q} + \overline{K}Q\)

    • J=K=1: Toggle

    • No invalid state (advantage over SR)

  • T Flip-Flop: Toggle flip-flop

    • \(Q^+ = T \oplus Q\)

  • Race-around condition: In JK flip-flops with pulse triggering

Flip-Flop Excitation Tables

  • D Flip-Flop: \(Q \to Q^+\) requires \(D = Q^+\)

  • JK Flip-Flop:

    • \(0 \to 0\): J=0, K=X

    • \(0 \to 1\): J=1, K=X

    • \(1 \to 0\): J=X, K=1

    • \(1 \to 1\): J=X, K=0

  • T Flip-Flop:

    • \(0 \to 0\): T=0

    • \(0 \to 1\): T=1

    • \(1 \to 0\): T=1

    • \(1 \to 1\): T=0

Finite State Machines

  • Moore Machine: Output depends only on current state

  • Mealy Machine: Output depends on current state and input

  • State Diagram: Graphical representation with states and transitions

  • State Table: Tabular representation of next state and output

  • State Assignment: Assign binary codes to states

  • State Reduction: Minimize number of states by merging equivalent states

  • Equivalence: Two states are equivalent if they produce same output sequence

Counters

  • Asynchronous (Ripple) Counter: Clock cascaded through FFs

    • Slower due to propagation delay

    • Simple design

  • Synchronous Counter: Common clock to all FFs

    • Faster operation

    • More complex design

  • Up Counter: Count 0, 1, 2, 3, ...

  • Down Counter: Count ..., 3, 2, 1, 0

  • Ring Counter: Circular shift register

  • Johnson Counter: Twisted ring counter (2n states for n FFs)

  • Modulo-N Counter: Count from 0 to N-1

Shift Registers

  • Serial In Serial Out (SISO): Data enters and exits serially

  • Serial In Parallel Out (SIPO): Data enters serially, exits in parallel

  • Parallel In Serial Out (PISO): Data enters in parallel, exits serially

  • Parallel In Parallel Out (PIPO): Data enters and exits in parallel

  • Bidirectional Shift Register: Left and right shift capability

  • Universal Shift Register: All operations possible

  • Applications: Data storage, serial communication, multiplication/division by 2

Memory Systems

Memory Types

  • ROM (Read Only Memory): Non-volatile, permanent storage

    • Mask ROM, PROM, EPROM, EEPROM, Flash

  • RAM (Random Access Memory): Volatile storage

    • SRAM (Static): Faster, uses flip-flops, no refresh

    • DRAM (Dynamic): Slower, uses capacitors, needs refresh

  • Memory Organization: Address lines (A), data lines (D), control lines

  • Memory Capacity: \(2^A \times D\) bits

  • Memory Expansion: Increase word size or word count

Programmable Logic Devices

  • PLA (Programmable Logic Array): Programmable AND and OR arrays

  • PAL (Programmable Array Logic): Programmable AND, fixed OR

  • FPGA (Field Programmable Gate Array): Most flexible

  • CPLD (Complex Programmable Logic Device): Between PAL and FPGA

  • Applications: Custom logic implementation, prototyping

Timing and Clocking

Timing Parameters

  • Propagation Delay: Time for output to change after input change

  • Setup Time: Data must be stable before clock edge

  • Hold Time: Data must be stable after clock edge

  • Clock-to-Q Delay: Time for FF output to change after clock

  • Clock Skew: Difference in clock arrival times

  • Maximum Frequency: \(f_{max} = \frac{1}{t_{prop} + t_{setup} + t_{skew}}\)

Hazards in Combinational Circuits

  • Static-1 Hazard: Output momentarily goes to 0 when it should remain 1

  • Static-0 Hazard: Output momentarily goes to 1 when it should remain 0

  • Dynamic Hazard: Multiple transitions when only one expected

  • Cause: Different path delays in combinational circuits

  • Detection: Using timing diagrams and K-maps

  • Elimination: Add redundant terms to cover transition gaps

Logic Families

Logic Families Comparison

  • TTL (Transistor-Transistor Logic): Bipolar technology

    • Fast switching, moderate power

    • Totem-pole output

  • CMOS (Complementary MOS): NMOS + PMOS

    • Very low static power

    • High noise immunity

    • Rail-to-rail output

  • ECL (Emitter Coupled Logic): High speed, constant current

  • Parameters: Fan-in, fan-out, noise margin, propagation delay, power

CMOS Characteristics

  • Static Power: Nearly zero (only leakage)

  • Dynamic Power: \(P = \alpha \cdot C \cdot V_{DD}^2 \cdot f\)

  • Noise Margins: High (typically 30-40% of VDD)

  • Fan-out: Very high (driven by capacitive loading)

  • Propagation Delay: \(t_{pd} = \frac{C \cdot V_{DD}}{I_{avg}}\)

  • Power-Delay Product: Figure of merit for logic families

Analog-Digital Interface

Analog-to-Digital Converters (ADC)

  • Flash ADC: Parallel comparison, fastest but expensive

  • Successive Approximation ADC: Binary search method, moderate speed

  • Dual Slope ADC: High accuracy, slow speed

  • Parameters: Resolution (bits), conversion time, accuracy

  • Quantization Error: \(\pm \frac{1}{2}\) LSB

  • LSB: \(\frac{V_{FS}}{2^n}\) where \(V_{FS}\) is full scale, n is bits

Digital-to-Analog Converters (DAC)

  • Binary Weighted DAC: Resistor values in binary ratios

  • R-2R Ladder DAC: Uses only two resistor values

  • Parameters: Resolution, settling time, monotonicity

  • Output: \(V_{out} = V_{ref} \times \frac{D}{2^n}\) where D is digital input

  • Applications: Control systems, audio, waveform generation

Important Formulas and Calculations

Key Formulas for GATE

  • Fan-out: \(\frac{I_{OL}}{I_{IL}}\) or \(\frac{I_{OH}}{I_{IH}}\)

  • Noise Margin High: \(V_{NMH} = V_{OH} - V_{IH}\)

  • Noise Margin Low: \(V_{NML} = V_{IL} - V_{OL}\)

  • Power-Delay Product: \(PDP = P_{avg} \times t_{pd}\)

  • Setup Time Constraint: \(T_{clk} \geq t_{pd} + t_{setup} + t_{skew}\)

  • Hold Time Constraint: \(t_{hold} \leq t_{cd} + t_{skew}\)

  • Dynamic Power: \(P = \alpha \cdot C \cdot V_{DD}^2 \cdot f\)

Common GATE Problem Areas

  • K-map simplification and Boolean algebra

  • Flip-flop excitation tables and conversions

  • Counter design (especially irregular sequences)

  • State machine design (sequence detectors)

  • Timing analysis and constraints

  • Logic family characteristics and interfacing

  • Memory organization and addressing

  • ADC/DAC numerical problems

GATE Preparation Tips

  • Master K-map techniques for 3, 4, and 5 variables

  • Practice state machine design extensively

  • Understand timing analysis thoroughly

  • Memorize flip-flop excitation tables

  • Focus on counter design problems

  • Practice numerical problems on logic families

  • Solve previous 10 years’ GATE questions

  • Time management: allocate 2-3 minutes per question