Semiconductors: The Mass-Action Law

Demonstrative Video


Mass Action Law

Charge densities in doped semiconductors

  • N-type semiconductor: \[\begin{aligned} n_N & = N_D + p_N \approx N_D \\ p_N & = \dfrac{n_i^2}{n_N}~(\text{from mass action law})\\ & \approx \dfrac{n_i^2}{N_D} \end{aligned}\]

  • P-type semiconductor:

    \[\begin{aligned} p_P & = N_A + n_P \approx N_A \\ n_p & = \dfrac{n_i^2}{p_P}~(\text{from mass action law})\\ & \approx \dfrac{n_i^2}{N_A} \end{aligned}\]

\[\begin{aligned} N_D & = \text{conc. of donor atoms} \\ n_N & = \text{electron conc. in N-type} \\ p_N & = \text{hole conc. in N-type} \\ N_A & = \text{conc. of acceptor atoms} \\ p_p & = \text{hole conc. in P-type} \\ n_P & = \text{electron conc. in P-type} \end{aligned}\]

Extrinsic Conductivity

Problem

Solution

  1. In intrinsic condition, \(n=p=n_i\) \[\begin{aligned} \sigma_i &=q n_i\left(\mu_n+\mu_p\right) =\left(1.6 \times 10^{-19}\right)\left(1.5 \times 10^{10}\right)(1300+500) \\ &=4.32 \times 10^{-6} \mathrm{~S} / \mathrm{cm} \end{aligned}\]

  2. Number of silicon atoms \(/ \mathrm{cm}^3=5 \times 10^{22}\) Hence, \(N_D=\frac{5 \times 10^{22}}{10^8}=5 \times 10^{14} \mathrm{~cm}^{-3}\) Further, \(n \approx N_D\) Therefore, \[\begin{aligned} p &=\frac{n_i^2}{n} \approx \frac{n_i^2}{N_D} =\frac{\left(1.5 \times 10^{10}\right)^2}{5 \times 10^{14}}=0.46 \times 10^6 \mathrm{~cm}^{-3} \end{aligned}\] Thus \(p \ll n\). Hence \(p\) may be neglected while calculating the conductivity. \[\begin{aligned} \sigma &=n q \mu_n=N_D q \mu_n \\ &=\left(5 \times 10^{14}\right)\left(1.6 \times 10^{-19}\right)(1300) \\ &=0.104 \mathrm{~S} / \mathrm{cm} . \end{aligned}\]

(c) \(N_A=\frac{5 \times 10^{22}}{5 \times 10^7}=10^{15} \mathrm{~cm}^{-3}\) Further, \(p \approx N_A\) Hence, \[\begin{aligned} n &=\frac{n_i^2}{p} \approx \frac{n_i^2}{N_A} =\frac{\left(1.5 \times 10^{10}\right)^2}{10^{15}}=2.25 \times 10^5 \mathrm{~cm}^{-3} \end{aligned}\] Thus, \(p \gg n\). Hence \(n\) may be neglected while calculating the conductivity. Hence, \[\begin{aligned} \sigma &=p q \mu_P=N_A q \mu_P =\left(10^{15} \times 1.6 \times 10^{-19} \times 500\right) \\ &=0.08 \mathrm{~S} / \mathrm{cm} . \end{aligned}\] (d) With both types of impurities present simultaneously, the net acceptor impurity density is, \[\begin{aligned} N_A{ }^{\prime} &=N_A-N_D=10^{15}-5 \times 10^{14}=5 \times 10^{14} \mathrm{~cm}^{-3} \\ \sigma &=N_A{ }^{\prime} q \mu_p =\left(5 \times 10^{14}\right)\left(1.6 \times 10^{-19}\right)(500) \\ &=0.04 \mathrm{~S} / \mathrm{cm} . \end{aligned}\]