Operational Amplifiers Circuits

Introduction

  • Operational amplifiers are fundamental building blocks in electronics

  • Basic and special purpose op-amp circuits:

    • Comparators

    • Summing amplifiers

    • Integrators and differentiators

    • Instrumentation amplifiers

    • Specialized amplifiers (OTA, log/antilog)

  • Applications include signal processing, digital circuits, and analog-to-digital conversion

Comparators

  • Specialized op-amp circuit that compares two input voltages

  • Output is always in one of two states (high or low)

  • Key characteristics:

    • Very fast switching times (as low as 500 ps propagation delay)

    • High open-loop gain enables detection of tiny input differences

  • Used for analog-to-digital interfacing

Zero-Level Detection

  • Inverting input grounded (0 V reference)

  • Input signal applied to noninverting input

  • Smallest input difference drives amplifier to saturation

  • Can convert sine waves to square waves (squaring circuit)

The op-amp as a zero-level detector
The op-amp as a zero-level detector

Nonzero-Level Detection

  • Fixed reference voltage replaces ground at inverting input

  • Three reference voltage methods:

    • Battery reference

    • Voltage divider reference (\(V_{REF} = \dfrac{R_2}{R_1+R_2}(+V)\))

    • Zener diode reference (\(V_{REF} = V_Z\))

  • Output switches when input crosses \(V_{REF}\)

Nonzero-level detector circuits
Nonzero-level detector circuits

Nonzero-level detector waveform
Nonzero-level detector waveform
Example:

Given \( R_1 = 8.2k\Omega \), \( R_2 = 1.0k\Omega \), \( +V = 15V \):

\[ V_{REF} = \frac{1.0k\Omega}{8.2k\Omega + 1.0k\Omega}(15V) = 1.63V \]

Output switches between \( \pm 14V \) when input crosses 1.63V.

Noise Effects and Hysteresis

  • Noise (unwanted voltage fluctuations) can cause unstable switching near the threshold

  • Example: A low-frequency sinusoidal voltage with noise causes erratic output

  • Solution: Implement hysteresis using positive feedback

    • Upper Trigger Point (UTP): \(V_{UTP} = \dfrac{R_2}{R_1+R_2}(+V_{out(max)})\)

    • Lower Trigger Point (LTP): \(V_{LTP} = \dfrac{R_2}{R_1+R_2}(-V_{out(max)})\)

    • Hysteresis voltage: \(V_{HYS} = V_{UTP} - V_{LTP}\)

  • Also called a Schmitt trigger

Effects of noise on comparator circuit
Effects of noise on comparator circuit

Operation of a comparator with hysteresis
Operation of a comparator with hysteresis

Output Bounding

  • Limits output voltage to values less than op-amp saturation

  • Methods:

    • Single zener diode: bounds one direction

    • Two zener diodes: bounds both directions (\(V_Z + 0.7V\) each way)

  • Example: With 4.7V zeners, output bounds at \(\pm5.4V\)

Comparator with output bounding
Comparator with output bounding

Comparator Applications

  • Over-temperature sensing:

    • Uses Wheatstone bridge with thermistor

    • Comparator detects bridge balance point

    • Triggers alarm/response when temperature exceeds threshold

  • Analog-to-Digital Conversion (Flash ADC):

    • Uses parallel comparators with reference voltage ladder

    • \(2^n-1\) comparators needed for n-bit conversion

    • Priority encoder produces binary output

Comparator applications
Comparator applications

Amplifiers

Summing Amplifier

  • Application of inverting op-amp configuration

  • Output proportional to negative sum of input voltages

  • \[\begin{aligned} V_{OUT} = -\left(\dfrac{R_f}{R_1}V_{IN1} + \dfrac{R_f}{R_2}V_{IN2} + \cdots + \dfrac{R_f}{R_n}V_{INn}\right) \end{aligned}\]
    General output equation:
  • \[\begin{aligned} V_{OUT} = -\dfrac{R_f}{R}(V_{IN1} + V_{IN2} + \cdots + V_{INn}) \end{aligned}\]
    For equal input resistors
Summing amplifier
Summing amplifier

Unity-Gain Summing Amplifier

  • Special case where \(R_f = R\)

  • \[\begin{aligned} V_{OUT} = -(V_{IN1} + V_{IN2} + \cdots + V_{INn}) \end{aligned}\]
    Output is simple inverted sum of inputs:
  • \[\begin{aligned} V_{OUT} = -(2V - 3V + 4V) = -3V \end{aligned}\]
    Example: For inputs +2V, -3V, and +4V:

Averaging Amplifier

  • Produces mathematical average of input voltages

  • Set \(R_f/R = 1/n\) where \(n\) is number of inputs

  • \[\begin{aligned} V_{OUT} = -\dfrac{1}{n}(V_{IN1} + V_{IN2} + \cdots + V_{INn}) \end{aligned}\]
    Output equation:
  • \[\begin{aligned} V_{OUT} = -\dfrac{25k\Omega}{100k\Omega}(V_1 + V_2 + V_3 + V_4) = -\dfrac{1}{4}(V_1 + V_2 + V_3 + V_4) \end{aligned}\]
    : , Example: 4-input averager with
Averaging amplifier
Averaging amplifier

Digital-to-Analog Conversion

  • Binary-weighted resistor DAC:

    • Each input resistor corresponds to binary weight

    • MSB has smallest resistor (\(R\)), next has \(2R\), then \(4R\), etc.

    • Output is analog representation of digital input

  • R/2R ladder DAC:

    • Uses only two resistor values (\(R\) and \(2R\))

    • More practical for IC implementation

    • Each bit contributes half the voltage of the previous bit

Digital-to-analog conversion circuits
Digital-to-analog conversion circuits

Op-Amp Integrator

  • Produces output proportional to integral of input

  • Basic configuration:

    • Input resistor \(R_{in}\)

    • Feedback capacitor \(C\)

  • \[\begin{aligned} V_{OUT} = -\dfrac{1}{R_{in}C}\int V_{IN} dt \end{aligned}\]
    Output voltage:
  • Constant input produces linear ramp output

Op-amp integrator
Op-amp integrator

Op-Amp Integrator Example

Given \( R_{in} = 10k\Omega \), \( C = 0.01\mu F \), square wave input \( \pm 2.5V \):

\[ \frac{\Delta V_{out}}{\Delta t} = -\frac{V_{in}}{R_{in}C} = -\frac{2.5V}{10k\Omega \times 0.01\mu F} = -25mV/\mu s \]

Produces triangular wave output with 5V peak-to-peak.

Op-amp integrator example
Op-amp integrator example

Op-Amp Differentiator

  • Produces output proportional to derivative of input

  • Basic configuration:

    • Input capacitor \(C\)

    • Feedback resistor \(R_f\)

  • Output voltage:

  • \[\begin{aligned} V_{OUT} = -R_f C \dfrac{dV_{IN}}{dt} \end{aligned}\]
  • Ramp input produces constant output

Output of a differentiator with a triangle wave input
Output of a differentiator with a triangle wave input

Instrumentation Amplifiers

  • Amplify small signals riding on large common-mode voltages

  • Key Characteristics:

    • High input impedance

    • High common-mode rejection

    • Low output offset

    • Low output impedance

  • \[\begin{aligned} \text{Gain}~A_{cl} = 1 + \dfrac{2R}{R_{\text{gain}}} \quad \text{where} \quad R_1 = R_2 = R \end{aligned}\]
  • Input Stage (2 Op-Amps): High \(Z_{in}\) and initial amplification

  • Difference Amplifier (3rd Op-Amp): Subtracts and amplifies input signal difference

Basic instrumentation amplifier with three op-amps
Basic instrumentation amplifier with three op-amps

Specialized Circuits

Operational Transconductance Amplifier (OTA)

  • OTA is a voltage-controlled current source (VCCS)

  • \[\begin{aligned} I_{\text{out}} = g_m \cdot (V_+ - V_-) \end{aligned}\]
    : into output Converts differential input
  • Output is current, unlike op-amps which output voltage

  • Transconductance \(g_m\) is programmable via bias current

  • Key Characteristics:

    • High input impedance

    • Wide bandwidth

    • Linear transconductance over bias range

    • Suitable for analog signal processing

Symbol for an operational transconductance amplifier (OTA)
Symbol for an operational transconductance amplifier (OTA)

OTA Applications and Comparison

Applications:

  • Voltage-controlled filters and oscillators

  • Analog multipliers and dividers

  • Audio and RF processing

  • AGC circuits, function generators

OTA vs Op-Amp:

Feature OTA Op-Amp
Output Current Voltage
Controlled by Bias current (\(g_m\)) Open-loop gain
Key Parameter \(g_m\) (transconductance) \(A_{OL}\) (gain)
Primary Use Tunable analog circuits Voltage amplification

Logarithmic Amplifier (Log Amp)

  • Outputs a voltage proportional to the logarithm of the input voltage

  • \[\begin{aligned} V_{\text{out}} = -K \cdot \ln\left(\dfrac{V_{\text{in}}}{V_T}\right) \end{aligned}\]
    Based on the exponential I-V relationship of a diode or BJT:
  • Uses an op-amp with a diode or BJT in the feedback path

A basic log amplifier
A basic log amplifier

Antilogarithmic Amplifier (Antilog Amp)

  • Converts a logarithmic input back to a linear output

  • \[\begin{aligned} V_{\text{out}} = K \cdot e^{V_{\text{in}}/V_T} \end{aligned}\]
    Uses a transistor in the input path to create an exponential relationship:
  • \[\begin{aligned} \log(A) + \log(B) = \log(AB) \Rightarrow \text{Antilog} \rightarrow AB \end{aligned}\]
    Often paired with log amps for analog multiplication/division:
A basic antilog amplifier
A basic antilog amplifier

Isolation Amplifier

  • Transmits signals across two circuits with galvanic isolation

  • Prevents high voltages or ground loop currents from damaging systems

  • Isolation achieved using:

    • Transformer coupling

    • Optical isolation (optocouplers)

    • Capacitive coupling

  • Key Features:

    • High input-to-output isolation voltage

    • Accurate signal transmission

    • High common-mode rejection (CMR)

Simplified block diagram of a typical isolation amplifier
Simplified block diagram of a typical isolation amplifier

Isolation Amplifier Applications

  • Applications:

    • Medical instrumentation (e.g., ECG, EEG)

    • Industrial process control

    • High-voltage system monitoring

    • Signal isolation in data acquisition systems

  • Advantages:

    • Protects measurement devices from voltage spikes

    • Eliminates ground loops and electrical noise

    • Enables safe measurement in hazardous environments

  • Note: Often integrated with analog-to-digital converters (ADCs)

Constant-Current Source

  • Delivers a fixed current regardless of load resistance

  • Based on Ohm’s law: \(I = \dfrac{V_{\text{ref}}}{R}\)

  • Uses negative feedback to maintain stable output current

A basic constant-current source
A basic constant-current source

Current-to-Voltage Converter

  • Also called a Transimpedance Amplifier

  • Converts input current (\(I_{\text{in}}\)) to output voltage (\(V_{\text{out}}\))

  • Output: \(V_{\text{out}} = -I_{\text{in}} R_f\)

  • Commonly used with photodiodes and sensors

Current-to-voltage converter
Current-to-voltage converter

Voltage-to-Current Converter

  • Also called a Voltage-Controlled Current Source (VCCS)

  • Converts input voltage to output current

  • Output current: \(I_{\text{out}} = \dfrac{V_{\text{in}}}{R}\)

  • Useful in actuators and LED drivers

Voltage-to-current converter
Voltage-to-current converter

Peak Detector

  • Captures and holds the peak value of an input signal

  • Uses an op-amp, diode, and capacitor

  • Commonly used in signal processing and instrumentation

A basic peak detector
A basic peak detector

Conclusion

  • Operational amplifiers are versatile components in electronics, enabling a wide range of circuits:

    • Comparators for signal comparison and ADC interfacing

    • Summing, averaging, and DAC circuits for signal processing

    • Integrators and differentiators for waveform generation

    • Instrumentation amplifiers for precise measurements

    • Specialized circuits (OTA, log/antilog, isolation) for advanced applications

  • Their high gain, flexibility, and reliability make op-amps essential in modern electronics

  • Future exploration: Advanced op-amp designs and integration with digital systems