Current Flow: Drift vs. Diffusion in Semiconductors

Demonstrative Video


Variation of Semiconductor parameters with temperature

Drift and Diffusion Currents

\[\text{Drift current density,}~J ~\text{A/cm\textsuperscript{2}} = \begin{cases} J_n = qn\mu_n E ~\Rightarrow \text{due to free electrons} \\ J_p = qp\mu_p E ~\Rightarrow \text{due to holes} \\ \end{cases}\]

\[\begin{aligned} n &= \text{number of free electrons per cubic centimetre} \\ p & = \text{number of holes per cubic centimetre} \\ \mu_n & = \text{mobility of electrons in} ~\mathrm{cm}^2 / \mathrm{V}-s \\ \mu_p & = \text{mobility of holes in} ~\mathrm{cm}^2 / \mathrm{V}-\mathrm{s} \\ E & = \text{applied electric field intensity in}~ \mathrm{V} / \mathrm{cm} \\ q & = \text{charge of an electron} =1.6 \times 10^{-19} ~\text{coulomb} \\ \end{aligned}\]

\[\text{Diffusion current density}~J~\text{A/cm\textsuperscript{2}} = \begin{cases} J_p = -qD_p\dfrac{dp}{dx} \Rightarrow \text{hole}\\ \\ J_n = -qD_n\dfrac{dn}{dx} \Rightarrow \text{electron} \end{cases}\]