Conquering Rectification: Diodes Power Up Electronics

Demonstrative Video



Need for a Diode - Initial Thoughts


DIODE - Basic Ideas

  • A diode has two terminals.

  • Conducts only when forward biased, i.e., when the terminal connected with the arrowhead is at a higher potential than the terminal connected to the bar.

  • When reverse biased, practically does not conduct any current through it.

image

image

image \[\boxed{V_d < V_b \rightarrow I_d \downarrow} \qquad \boxed{V_d > V_b \rightarrow I_d \uparrow}\]

image
image

image
image

Ideal Diode: acts like a perfect conductor (zero resistance) when forward biased and like a perfect insulator (\(\infty\) resistance) when reverse biased.

image
image


Diode Characteristic Curve

image

\[\begin{aligned} & V_{\text{anode}} > V_{\text{cathode}} \leftarrow \text{on} \\ & V_{\text{anode}} < V_{\text{cathode}} \leftarrow \text{off} \\ & V_{\text{anode}} - V_{\text{cathode}} = V_D \end{aligned}\]

Real diode
image

Ideal diode
image

Si Vs Ge
image

image


Diode Current Equation

The diode current equation relating the voltage \(V\) and current \(I\) \[I=I_o\left[\mathrm{e}^{\left(V / \eta V_T\right)}-1\right]\] where \[\begin{aligned} I & = \text{diode current} \\ I_o & = \text{diode reverse saturation current at room temperature}\\ V & = \text{external voltage applied to the diode} \\ \eta &=\text{ a constant, 1 for germanium and 2 for silicon} \\ V_T&=k T / q=T / 11600, \text{volt-equivalent of temperature, i.e., thermal voltage} \\ k & = \text{Boltzmann's constant}~\left(1.38066 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)\\ q & = \text{charge of the electron}~ \left(1.60219 \times 10^{-19} \mathrm{C}\right)\\ T & = \text{temperature of the diode junction}~ (\mathrm{K})=\left({ }^{\circ} \mathrm{C}+273^{\circ}\right) \end{aligned}\]

\[\boxed{I=I_o\left[\mathrm{e}^{\left(V / \eta V_T\right)}-1\right]}\]


Load Lines

image
image

Problem-1

\[\begin{aligned} \text{Forward bias voltage}~V& = 0.7 ~ \text{V} \\ \text{Saturation current}~ I_s & = 10 \, \mu\text{A} = 10^{-5} \, \text{A} \\ \text{Forward bias resistance}~ R_f & = 50 \, \Omega \\ \text{Ideality factor}~ \eta &= 1 \\ \text{Thermal voltage}~ V_t & = 26 \, \text{mV} = 26 \times 10^{-3} \, \text{V} \\ \text{Diode equation:} ~ & I = I_s \left( e^{\frac{V}{\eta V_t}} - 1 \right) \\ & = 10^{-5} \left( e^{\frac{0.7}{1 \times 26 \times 10^{-3}}} - 1 \right) \\ & \approx 0.205 \, \text{A} \end{aligned}\]



Diode as a Rectifiers


Half-Wave Rectifiers

Operation:

image

Forward-Biased image
image

Reverse-Biased image

Full-cycle

image


Important formulas


Full-wave rectifiers

Centre-tapped Full-Wave Rectifiers

  • Consists of a centre tapped step-down TF and two diodes.

  • The output voltage is obtained across the connected load resistor.

image

Bridge Rectifiers

image
image

image
image


Important Formulas


Ripples in Rectified DC Output


Summary

image


Problem-1

  • An a.c. supply of 230 V is applied to a half-wave rectifier circuit through a transformer of turn ratio 10:1. Find (i) the output d.c. voltage and (ii) the peak inverse voltage. Assume the diode to be ideal.

image

\[\begin{aligned} \text{Max. primary voltage}~V_{pm} &= \sqrt{2} \times 230 = 325.3~\mathrm{V} \\ \text{Max. secondary voltage}~V_{sm} & = V_{pm} \times \dfrac{N_2}{N_1} = 325.3\times\dfrac{1}{10} = 32.53~\mathrm{V}\\ V_{dc} & = I_{dc} \times R_L\\ & = \dfrac{I_m}{\pi} \times R_L = \dfrac{V_{sm}}{\pi} = \dfrac{32.53}{\pi} = 10.36~\mathrm{V}\\ \text{PIV} & = V_{sm} = 32.53~\mathrm{V} \\ \end{aligned}\]


Problem-2

\[\begin{aligned} v&=50 \sin \omega t \Rightarrow V_m =50 \mathrm{~V}\\ I_m&=\frac{V_m}{r_f+R_L}=\frac{50}{20+800}=0.061 \mathrm{~A}=61 \mathrm{~mA} \\ I_{d c} & =I_m / \pi=61 / \pi=19.4 \mathrm{~mA} \\ I_{r m s} & =I_m / 2=61 / 2=30.5 \mathrm{~mA} \end{aligned}\]

\[\begin{aligned} \text{a.c. power input}&=\left(I_{r m s}\right)^2 \times\left(R_f+R_L\right)\\ &=\left(\frac{30.5}{1000}\right)^2 \times(20+800)=0.763~\mathrm{W}\\ \text{d.c. power output}&=I_{d c}^2 \times R_L=\left(\frac{19.4}{1000}\right)^2 \times 800=0.301~\mathrm{W} \\ \text{d.c. output voltage}&=I_{d c} R_L=19.4 \mathrm{~mA} \times 800 \Omega=15.52~\mathrm{V} \\ \text{Efficiency of rectification}&=\frac{0.301}{0.763} \times 100=39.5 \% \end{aligned}\]


Problem-3

A half-wave rectifier is used to supply \(50 ~\mathrm{~V}\) d.c. to a resistive load of \(800~ \Omega\). The diode has a resistance of \(25~ \Omega\). Calculate a.c. voltage required.

\[\begin{aligned} \text { Output d.c. voltage, } V_{d c} & =50 \mathrm{~V} \\ \text { Diode resistance, } r_f & =25 \Omega \\ \text { Load resistance, } R_L & =800 \Omega \end{aligned}\] Let \(V_m\) be the maximum value of a.c. voltage required. \[\begin{array}{rlrl} \therefore & V_{d c} =I_{d c} \times R_L \\ & =\dfrac{I_m}{\pi} \times R_L=\dfrac{V_m}{\pi\left(r_f+R_L\right)} \times R_L \quad\left[\because I_m=\dfrac{V_m}{r_f+R_L}\right] \\ \Rightarrow~ 50 &=\dfrac{V_m}{\pi(25+800)} \times 800 \\ \therefore \quad V_m & =\dfrac{\pi \times 825 \times 50}{800}=162 \mathrm{~V} \end{array}\]


Problem-4

A full-wave rectifier uses two diodes, the internal resistance of each diode may be assumed constant at \(20~ \Omega\). The transformer r.m.s. secondary voltage from centre tap to each end of secondary is \(50~ \mathrm{~V}\) and load resistance is \(980~ \Omega\). Find : (i) the mean load current (ii) the r.m.s. value of load current.

\[\begin{aligned} r_f & =20 \Omega, \quad R_L=980 \Omega \\ \text { Max. a.c. voltage, } V_m & =50 \times \sqrt{2}=70.7 \mathrm{~V} \\ \text { Max. load current, } I_m & =\frac{V_m}{r_f+R_L}=\frac{70.7 \mathrm{~V}}{(20+980) \Omega}=70.7 \mathrm{~mA}\\ I_{d c}&=\frac{2 I_m}{\pi}=\frac{2 \times 70.7}{\pi}=45 \mathrm{~mA}\\ I_{r m s}&=\frac{I_m}{\sqrt{2}}=\frac{70.7}{\sqrt{2}} =50 \mathrm{~mA} \end{aligned}\]


Problem-5

  • In the centre-tap circuit, the diodes are assumed to be ideal i.e. having zero internal resistance. Find :(i) d.c. output voltage(ii) peak inverse voltage (iii) rectification efficiency.

image

\[\begin{aligned} V_p & = 230~\mathrm{V} \\ V_s & = 230 \times (1/5) = 46~\mathrm{V} \\ V_{sm} & = 46 \times \sqrt{2} = 65~\mathrm{V} \end{aligned}\] \[\begin{aligned} V_m & = 65/2 = 32.5~\mathrm{V} \\ I_{dc} & = \dfrac{2V_m}{\pi R_L} \\ &= \dfrac{2\times 32.5}{\pi \times 100} = 0.207~\mathrm{A} \\ \text{PIV} & = 65~\mathrm{V} \end{aligned}\]

\[\begin{aligned} I_{rms} & = \dfrac{I_m}{\sqrt{2}} = \dfrac{V_m}{\sqrt{2}\times R_L} = \dfrac{32.5}{\sqrt{2}\times 100} = 0.229~\mathrm{A} \\ \text{Rect. efficiency}~\eta & = \dfrac{I_{dc}^2\times R_L}{I_{rms}^2\times R_L} = 81.7\% \end{aligned}\]