Taming Three-Phase Transformers: Solved Problems

Demonstrative Video


Problem-1

A 3-phase, 500 kVA, 6000V/400V, 50Hz, delta-star connected transformer is delivering 300 kW, at 0.8 pf lagging to a balanced 3-phase load connected to the LV side with HV side supplied from 6000 V, 3- phase supply. Calculate the line and winding currents in both the sides. Assume the transformer to be ideal.

Solution-1

image
Load KVA,S=Pcosθ=3000.8=375kVA=input kVALine current drawn by load,I2L=S3VLL=375×10003×400=541.3AHV side line current,I1L=375×10003×6000=36.1ALV Star-connectionI2P=I2L=541.3AHV delta-connected,I1P=I1L3=36.13=20.84ALoad KVA,S=Pcosθ=3000.8=375kVA=input kVALine current drawn by load,I2L=S3VLL=375×10003×400=541.3AHV side line current,I1L=375×10003×6000=36.1ALV Star-connectionI2P=I2L=541.3AHV delta-connected,I1P=I1L3=36.13=20.84A

Problem-2

A 3-phase, 50Hz transformer has a delta-connected primary and star connected secondary, the line voltage being 22,000 V and 400 V respectively. The secondary has a star connected balanced load at 0.8 power factor lagging. The line current on the primary side is 5 A. Determine the current in each coil of the primary and in each secondary line. What is the output of the transformer in kW?

Solution-2

image
Phase voltage on primary side=22,000 V Phase voltage on secondary side=400/3K=400/22,000×3=1/553Primary phase current=5/3 ASecondary phase current=53÷1553=275 A Secondary line current =275 A Output =3VLILcosϕ=3×400×275×0.8=15.24 kWPhase voltage on primary side=22,000 V Phase voltage on secondary side=400/3K=400/22,000×3=1/553Primary phase current=5/3 ASecondary phase current=53÷1553=275 A Secondary line current =275 A Output =3VLILcosϕ=3×400×275×0.8=15.24 kW

Problem-3

A 500-KVA, 3-phase, 50-Hz transformer has a voltage ratio (line voltages) of 33/11-KV and is delta/star connected. The resistance per phase are: high voltage 35 ΩΩ, low voltage 0.876 ΩΩ and the iron loss is 3050 W. calculate the value of efficiency at full-load and one-half of full-load respectively

  1. at unity p.f.

  2. 0.8 p.f.

Solution-3

K=11/333=0.192R02=R1+R2=K2R1+R2=0.1922×35+0.876=2.166ΩStar-Side,I2p=I2L=S3×V2L=500×1033×11×103=26.243A

Full-Load Condition:

Cu-loss=3I22pR02=3×26.2432×2.166=4475.14 WIron-loss=3050WTotal-loss=4475.14+3050=7525.14 WAt UPF η=500×103×1500×103×1+7525.14×100=98.51%At 0.8 PF, η=500×103×0.8500×103×0.8+7525.14×100=98.15%

Half-Load Condition:

Cu-loss=(12)2×4475.14=1118.78 WTotal-loss=1118.78+3050=4168.78 WAt UPFη=0.5×500×103×1500×103×1+4168.78×100=98.35%At 0.8 UPFη=0.5×500×103×0.8500×103×0.8+4168.78×100=97.95%

Problem-4

A 3-phase transformer 33/6.6-KV, delta-star, 2 MVA has a primary resistance of 8 Ω per phase and a secondary resistance of 0.08 ohm per phase. The percentage impedance is 7%. Calculate the secondary voltage with rated primary voltage and hence the regulation for full-load 0.75 p.f. lagging conditions.

Solution-4

F.L. I2=2×1063×6.6×103=175 AK=6.6/3×33=1/8.65R02=0.08+8/8.652=0.1867Ω per phaseZ02 drop per phase=7100×6,6003=266.7 VZ02=266.7/175=1.523Ω per phaseX02=Z202R202=1.52320.18672=1.51Ω/phase
Drop per phase=I2(R02cosϕ+X02sinϕ)=175(0.1867×0.75+1.51×0.66)=200 VE2 per-phase=6,600/3=3,810 VV2=3,810200=3,610 VV2L=3,610×3=6,250 V%regn.=200×100/3,810=5.23%

Problem-5

A 5000 KVA, 3-phase transformer, 6.6/33-KV, delta-star has a no-load loss of 15 KW and a full-load loss of 50 KW. The impedance drop at full-load is 7%. Calculate the primary voltage when a load of 3200 KW at 0.8 pf is delivered at 33 KV.

Solution-5

Full-load I2=5×106/3×33,000=87.5 AImpedance drop/phase=7% of (33/3)=7% of 19kV=1,330 VZ02=1.330/87.5=15.3 Ω /phaseF.L. Cu loss =5015=35 kW3I2R02=35,000R02=35,000/3×8.752=1.53Ω  /phase X02=15.321.532=15.23 Ω
When load is 3,200  kW at 0.8 p.fI2=3,200/3×33×0.8=70 Adrop=70(1.53×0.8+15.23×0.6)=725 V/ phase % regn. =725×10019,000=3.8%Primary voltage will have to be increased by 3.8%Primary voltage=6.6+3.8% of 6.6=6.85kV=6.850 V