Solved Problems on Single-Phase Induction Motor Using its Equivalent Circuit


Problem-1

Resistance of the stator main winding \(R_1 = 1.86~\Omega\)
Reactance of the stator main winding \(X_1 = 2.56~\Omega\)
Magnetizing reactance of the stator main winding \(X_m = 53.5~\Omega\)
Rotor resistance at standstill \(R_2 = 3.56~\Omega\)
Rotor reactance at standstill \(X_2 = 2.56~\Omega\)

Solution

image

\[\begin{aligned} x_m & = X_m/2 = 53.5/2=26.7~\Omega \\ r_2 & = R_2/2 = 3.56/2 = 1.78~\Omega \\ x_2 & = X_2/2 = 2.56/2=1.28~\Omega \end{aligned}\]

\[\begin{aligned} &Z_{f} = \frac{j x_{m}\left(\frac{r_{2}}{s}+j x_{2}\right)}{\frac{r_{2}}{s}+j (x_{2}+x_{m})} \\ &=x_{m} \frac{\frac{r_{2}}{s} . x_{m}+j\left[\left(r_{2} / s\right)^{2}+x_{2} x_{0}\right]}{\left(r_{2} / s\right)^{2}+x_{0}^{2}}\quad\mathrm{where}~ x_{0}=(x_{m}+x_{2}) \\ &Z_{f} = 26.7 \frac{(1.78 / 0.05)\times26.7+j [(1.78 / 0.05)^{2}+1.28\times27.98]}{(1.78 / 0.05)^{2}+(27.98)^{2}} \\ &= 12.4+j 17.15=21.15 \angle54.2^{\circ} \end{aligned}\]

\[\begin{aligned} &Z_{b} = \frac{j x_{m}\left(\frac{r_{2}}{2-s}+ j x_{2}\right)}{\frac{r_{2}}{2-s}+ j (x_{2}+x_{m})} = x_{m} \frac{\left(\frac{r_{2}}{2-s}\right)x_{m} + j \left[\left(\frac{r_{2}}{2-s}\right)^{2}+ x_{0} x_{2}\right]}{\left(\frac{r_{2}}{2-s}\right)^{2}+ x_{0}^{2}} \\ &= 26.7 \frac{(1.78/1.95)\times26.7+j [(1.78/1.95)^{2}+1.28\times27.98]}{(1.78/1.95)^{2}+(27.98)^{2}} \\ &= 0.84+j 1.26=1.51 \angle56.3^{\circ} \\ &\mathbf{Z}_{1} = R_1+j X_1=1.86+j 2.56=3.16 \angle54^\mathrm{o} \end{aligned}\]

Total circuit impedance:

\[\begin{aligned} \mathbf{Z}_{01}& = \mathbf{Z_1}+\mathbf{Z_f}+\mathbf{Z_b}\\ &=(1.86+j 2.56)+(12.4+j 17.15)+(0.84+j 1.26) \\ &= 15.1 +j 20.97=25.85\angle54.3^{\circ} \\ \end{aligned}\]

\[\begin{aligned} I_{1}& = 110/25.85=4.27 ~\mathrm{A} \\ V_{f}& = I_{1} Z_{f}=4.27\times21.15=90.4 ~\mathrm{V}\\ V_{b} &=I_{1} Z_{b}=4.27\times1.51=6.44~ \mathrm{V} \\ Z_{3} & = \sqrt{\left(\frac{r_2}{s}\right)^2+x_2^2} =35.7~ ~\Omega \\ Z_5 &= \sqrt{\left(\frac{r_2}{2-s}\right)^2+x_2^2} =1.57 ~\Omega \\ I_{3}& = V_{f}/Z_{3}=90.4/35.7=2.53~ \mathrm{A}\\ I_{5} &=V_{b}/Z_{5}=6.44/1.57=4.1 ~\mathrm{A} \\ T_{f}& = I_{3}^{2} R_{2} / s=228 ~\mathrm{synch.~watts} \\ T_{5}&=I_{5}^{2} r_{2}/(2-s)=15.3 ~\mathrm{synch.~watts} \\ \text{T}& = T_{f}-T_{b}=228-15.3=212.7 ~\mathrm{synch.~watts} \\ \mathrm{Output}&=\mathrm{synch.~watt}\times(1-s)=212.7\times0.95=202~ \mathbf{W} \end{aligned}\]


Problem-2

image


Solution


Problem-3

A 220-V, 6-pole, 50-Hz, single-winding single-phase induction motor has the following equivalent circuit parameters as referred to the stator.

\[\begin{aligned}R_{Im}&=3.0 ~\Omega,\quad X_{Im}=5.0 ~\Omega\\R_{2}&=1.5 ~\Omega,\quad X_{2}=2.0 ~\Omega\end{aligned}\]

Neglect the magnetizing current. When the motor runs at 97% of the synchronous speed, compute the following:

  1. The ratio \(E_{mf}/E_{mb}\)

  2. The ratio \(V_f/V_b\)

  3. The ratio \(T_f/T_b\)

  4. The gross total torque.

  5. The ratios \(T_f/\text{(Total torque)}\) and \(T_b/\text{(Total torque)}\)


Solution