The magnetic circuit consists of an N-turn winding on a magnetic core
of infinite permeability with two parallel air gaps of length \(g_1\) and \(g_2\), and areas \(A_1\) and \(A_2\), respectively. Find
the inductance of the winding and
the flux density \(B_1\) in
gap-1 when the winding is carrying a current \(i\)
Total reluctances is equal to the parallel combination of the two
gap reluctances.
\[\begin{aligned}
L &=\frac{\lambda}{i}=\frac{N
\phi}{i}=\frac{N^{2}\left(\mathcal{R}_{1}+\mathcal{R}_{2}\right)}{\mathcal{R}_{1}
\mathcal{R}_{2}}
=\mu_{0}
N^{2}\left(\frac{A_{1}}{g_{1}}+\frac{A_{2}}{g_{2}}\right)
\end{aligned}\]
\[\begin{array}{c}
\phi_{1}=\dfrac{N i}{\mathcal{R}_{1}}=\dfrac{\mu_{0} A_{1} N
i}{g_{1}} \\
B_{1}=\dfrac{\phi_{1}}{A_{1}}=\dfrac{\mu_{0} N i}{g_{1}}
\end{array}\]
From equivalent circuit
Problem-3
Find
Inductance, \(L\)
Magnetic stored energy \(W\) for
\(B_c=1.0~T\)
Induced volatge \(e\) for a
60-Hz time varying core flux of the form \(B_c=1.0\sin\omega t\) T where \(2\pi 60=377\)
Solution-3
\[\begin{aligned}
L &=\frac{\lambda}{i}=\frac{N
\phi}{i}=\frac{N^{2}}{\mathcal{R}_{\mathrm{c}}+\mathcal{R}_{g}} \\
&=\frac{500^{2}}{4.46 \times 10^{5}}=0.56 \mathrm{H}
\end{aligned}\]
. Thus to a good approximation the
inductance is dominated by the gap reluctance, i.e., Note that the core reluctance is much
smaller than that of the gap
\[W=\frac{1}{2} L
i^{2}=\frac{1}{2}(0.56)(0.80)^{2}=0.18 \mathrm{~J}\]
Given: Core \(A_{c}=1.8 \times 10^{-3}
\mathrm{~m}^{2},\)\(I_{c}=0.6
\mathrm{~m},\)\(g=2.3 \times 10^{-3}
\mathrm{~m}, ~N=83\) turns. Assume core is of \(\mu=\infty\) and neglect the effects of
fringing fields at the air gap and leakage flux.
Calculate \(\mathcal{R}_{\mathrm{c}}\) and \(\mathcal{R}_{\mathrm{g}}\)
For a current of \(\mathrm{i}=1.5
\mathrm{~A},\) calculate
total flux \(\phi\), flux
linkages \(\lambda\) of the coil, and
coil inductance L.
\(N\) required to achieve an
inductance of \(12
\mathrm{mH}\)
the inductor current which will result in \(B_c\) of \(1.0
\mathrm{~T}\).
In the magnetic circuit of Fig., the \(\mu_r\) of the ferromagnetic material is
1200. Neglect magnetic leakage and fringing. All dimensions are in
centimetres, and the magnetic material has a square cross-sectional
area. Determine the air gap flux, the air gap flux density, and the
magnetic held intensity in the air gap.
A ferromagnetic core with a relative permeability of 1500 is shown in Figure. Because of fringing effect, the effective area of the air gaps is 5% larger than their physical size. Current in the coil is 1 A.
What is the flux in each of the left, center and right legs of the core.
What is the flux density in each air gap?
Solution-8
\[
\begin{aligned}
& R_{1}=\frac{l_{1}}{\mu_{0}\mu_{r}A_{1}} \\
& l_1=3.5+30+3.5+3.5+30+3.5+3.5+30+3.5=111cm=1.11m \\
& A_{1}=7 \times 7=49 cm^{2}=0.0049m^{2} \\
& \boxed{R_{1} = \frac{1.11}{1500\times4\pi\times10^{-7}\times0.0049}=120.178 \times 10^{3}~\mathrm{At/Wb}} \\
& \text{Air gap in left side:} \\
& R_{g1}=\frac{l_{g1}}{\mu_{0}A_{g1}} \\
& l_{g1}=0.07 cm=0.0007 m \\
& A_{g1}=0.0049\times1.05=0.0051 m^{2} \\
& \boxed{R_{g1} = \frac{0.0007}{4\pi \times10^{-7} \times 0.0051}=109.22 \times 10^{3} ~\mathrm{At/Wb}}
\end{aligned}
\]
\[
\begin{aligned}
& \boxed{R_{2}= \frac {l_{2}}{\mu _{0}\mu _{r}A_{2}} =120.178 \times 10^{3}~\mathrm{At/Wb}} \\
& \text{Air gap in the Right side:}\\
& R_{g2}=\frac{l_{g2}}{\mu_{0}A_{g2}} \\
& l_{g2}= 0. 05~cm= 0. 0005~m \\
& A_{g2}=0.0049 \times 1.05=0.0051\:m^2 \\
& \boxed{R_{g2}=\frac{0.0005}{4\pi\times10^{-7}\times0.0051}=78.015\times10^{3}~\mathrm{At/Wb}} \\
& l_{3}=3.5+30+3.5=37cm=0.37m \\
& A_3=49\:cm^2=0.0049\:m^2 \\
& \boxed{R_{3}=\frac{l_{3}}{\mu_{0}\mu_{r}A_{3}}=\frac{0.37}{1500\times4\pi\times10^{-7}\times0.0049}=40.6^{*}10^{3}~\mathrm{At/Wb}}\\
\end{aligned}
\]
\[
\boxed{\begin{aligned}R_{total}&=( 40.6+229.39 || 198.19 )\times 10^3\\&=( 40.6+106.33)\times 10^3=146.39\times 10^3\end{aligned}}
\]
a.) What is the flux in each of the left, center and right
\[
\begin{aligned}
& \text { Flux }(\phi)=\frac{m \cdot m \cdot f}{R_{\text {total }}}=\frac{400 * 1}{146.39 * 10^3}=0.0027 \mathrm{wb} \\
& \phi_{\text {center }}=0.0027 \mathrm{wb}
\end{aligned}
\]
\[
\begin{aligned}
& \phi_{\text {left }}=\frac{0.0027}{(229.39+198.19) * 10^3} * 198.19 * 10^3=0.0013 \mathrm{wb} \\
& \phi_{\text {right }}=\frac{0.0027}{(229.39+198.19) * 10^3} * 229.39 * 10^3=0.0014 \mathrm{wb}
\end{aligned}
\]
b.) What is the flux density in each air gap?
\[
\begin{aligned}
& B_{\text {leftag }}=\frac{\phi_{\text {left }}}{\mathrm{A}_{g 1}}=\frac{0.0013}{0.0051}=0.2549 \mathrm{~T} \\
& B_{\text {rightag }}=\frac{\phi_{\text {right }}}{\mathrm{A}_{g 2}}=\frac{0.0014}{0.0051}=0.2745 \mathrm{~T}
\end{aligned}
\]