Taming Alternator Voltage: Solved Problems for Stable Power Generation

Demonstrative Video


Problem-1

\[\begin{aligned} I_\mathrm{F.L}&=\frac{10 \times 10^6}{\sqrt{3} \times 11,000 \times 0.85}=618 \mathrm{~A} \\ I R_a \text { drop }&=618 \times 0.1=61.8 \mathrm{~V} \\ I X_S \text { drop }&=618 \times 0.66=408 \mathrm{~V} \\ V_t/\text{phase}&=11,000 / \sqrt{3}=6,350 \mathrm{~V}\\ \phi&=\cos ^{-1}(0.85)=31.8^{\circ} \\ \sin \phi&=0.527 \end{aligned}\] image

\[\begin{aligned} E_0&=\sqrt{\left(V \cos \phi+I R_a\right)^2+\left(V \sin \phi+I X_S\right)^2} \\ & =\sqrt{(6350 \times 0.85+61.8)^2+(6350 \times 0.527+408)^2} \\ & =6,625 \mathrm{~V} \\ \text { Line e.m.f. }&=\sqrt{3} \times 6,625=11,486 \text { volt } \\ \end{aligned}\]


Problem-2

\[\begin{aligned} V&=440 / \sqrt{3}=254 \mathrm{~V}\\ I_\mathrm{FL}~\text{at UPF} & =\dfrac{50,000} { \sqrt{3} \times 440}=65.6 \mathrm{~A}\\ IR_a&=65.6 \times 0.25=16.4 \mathrm{~V}\\ I X_L&=65.6 \times 0.5=32.8 \mathrm{~V} \end{aligned}\] image

\[\begin{aligned} E_a & =\sqrt{\left(V+I R_a\right)^2+\left(I X_L\right)^2} \\ &=\sqrt{(254+16.4)^2+32.8^2}=272 \text { volt } \\ \text { Line value } & =\sqrt{3} \times 272=471 \text { volt. } \\ E_0 & =\sqrt{\left(V+I R_a\right)^2+\left(I X_S\right)^2}\\ &=\sqrt{(254+16.4)^2+(65.6 \times 3.2)^2}=342 \text { volt } \\ \text { Line value } & =\sqrt{3} \times 342=\mathbf{5 9 2} \text { volt } \end{aligned}\]

\[\begin{aligned} \%~\text{Regulation}& =\frac{E_0-V}{V} \times 100\\ &=\frac{342-254}{254} \times 100=\mathbf{34.65\%} \\ X_a & =X_S-X_L\\ &=3.2-0.5= \mathbf{2.7}~\Omega \end{aligned}\]


Problem-3

\[\begin{aligned} V_{p h} & =\frac{3300}{\sqrt{3}}=1905 \text { volts } \\ I_{p h} & =\frac{1000 \times 1000}{\sqrt{3} \times 3300}=175 \mathrm{amp} \end{aligned}\] image \[\begin{aligned} OA & = 1905,~AB = I\cdot R ,~ BC = I\cdot X_s \end{aligned}\]

\[\begin{aligned} \text { E along Ref } ~O D&=O A+A B \cos \phi+B C \sin \phi \\ & =1905+(87.5 \times 0.80)+(875 \times 0.60)\\ &=2500~\mathrm{V} \\ \text { E along} \perp ~ C D& =-A B \sin \phi+B C \cos \phi \\ & =87.5 \times 0.6+875 \times 0.80 =647.5 ~\mathrm{V}\\ E = OC &= \sqrt{OD^2+DC^2} = \sqrt{2500^2+647.5^2}=\color{magenta}{2582.5~\mathrm{V}}\\ \delta_1 & = \sin^{-1}\dfrac{CD}{OC} = \sin^{-1}\left(647.5/2582.5\right)=14.52^{\circ} \end{aligned}\]


Problem-4

\[\begin{aligned} Z_S & =\frac{\text { O.C. voltage } / \text { phase }}{\text { S.C. current } / \text { phase }} =\frac{1040 / \sqrt{3}}{200}=3 \Omega \\ X_S & =\sqrt{Z_S^2-R_a^2}=\sqrt{3^2-0.2^2} =2.99 \Omega \\ I_{FL}&=100,000 / \sqrt{3} \times 3000 =19.2 \mathrm{~A} \\ I R_a&=19.2 \times 0.2=3.84 \mathrm{~V} \\ I X_S&=19.2 \times 2.99=57.4 \mathrm{~V} \\ \text { Voltage/phase } & =3000 / \sqrt{3}=1730 \mathrm{~V} \\ & \cos \phi=0.8 \quad \sin \phi=0.6 \end{aligned}\]

\[\begin{aligned} & \color{magenta}{\textbf{0.8 p.f. lagging}} \\ E_0 & =\left[\left(V \cos \phi+I R_a\right)^2+\left(V \sin \phi+I X_S\right)^2\right]^{1 / 2} \\ & \left.=(1730 \times 0.8+3.84)^2+(1730 \times 0.6+57.4)^2\right]^{1 / 2}\\ &=1768 \mathrm{~V} \\ \% \text { regn. } & =\frac{(1768-1730)}{1730} \times 100=2.2 \% \\ & \color{magenta}{\textbf{0.8 p.f. leading}}\\ E_0 & =\left[\left(V \cos \phi+I R_a\right)^2+\left(V \sin \phi-I X_S\right)^2\right]^{1 / 2} \\ & =\left[(1730 \times 0.8+3.84)^2+(1730 \times 0.6-57.4)^2\right]^{1 / 2} \\ & =1699 \mathrm{~V} \\ \% \text { regn. } & =\frac{1699-1730}{1730} \times 100=-1.8 \% \end{aligned}\]

image


Problem-5

\[\begin{aligned} E_0^2 &=\left(V \cos \phi+I R_a\right)^2+\left(V \sin \phi-I X_S\right)^2 \\ E_0 & =11,000 / \sqrt{3}=6350 \mathrm{~V} \\ V & =12370 / \sqrt{3}=7142 \mathrm{~V} \\ \cos \phi&=0, \quad \sin \phi=1 \\ & \therefore \quad 6350^2=(0+100 \times 0.4)^2+\left(7142-100 X_S\right)^2 \\ & \therefore \quad 100 X_S=790 \\ & \Rightarrow~ X_S=7.9 \Omega \end{aligned}\]

\[\begin{aligned} I_{FL} & =\frac{3 \times 10^6}{\sqrt{3} \times 11,000}=157 \mathrm{~A} \\ I R_a & =0.4 \times 157=63 \mathrm{~V} \\ I X_S & =157 \times 7.9=1240 \mathrm{~V} \\ \therefore \quad E_0 & =\left[(6350 \times 0.8+63)^2+\right. (6350 \times 0.6+ \left.1240)^2\right]^{1 / 2}\\ &=7210 \mathrm{~V} / \text { phase } \\ \therefore \quad \% \text { regn } & =\frac{7210-6350}{6350} \times 100=13.5 \% \end{aligned}\]