Demonstrative Video
VIDEO
Power Stages in an Induction Motor
Stator iron loss (eddy+hysteresis losses) depends on the supply
frequency and the flux density in the iron core, is practically
constant
The rotor iron loss is negligible because frequency of rotor
current under normal condition is always small
Total rotor Cu loss = \(3I_2^2R_2\)
\[\begin{aligned}
T_{g} & =\dfrac{P_{2}}{\omega_{s}}=\dfrac{P_{2}}{2\pi
N_{s}}\cdots\cdots\mbox{in terms of the rotor input}\\
& =\dfrac{P_{m}}{\omega}=\dfrac{P_{m}}{2\pi
N}\cdots\cdots\mbox{in terms of rotor output}
\end{aligned}\]
Gross Torque developed by the motor
\[T_{sh}=\dfrac{P_{out}}{\omega}=\dfrac{P_{out}}{2\pi
N}\]
Shaft Torque
\[\begin{aligned}
T_{g} & =\dfrac{P_{2}}{2\pi
N_{s}/60}=\dfrac{60}{2\pi}\cdot\dfrac{P_{2}}{N_{s}}=9.55\dfrac{P_{2}}{N_{s}}\\
& =\dfrac{P_{m}}{2\pi
N/60}=\dfrac{60}{2\pi}\cdot\dfrac{P_{m}}{N}=9.55\dfrac{P_{m}}{N}\\
T_{sh} & =\dfrac{P_{out}}{2\pi
N/60}=\dfrac{60}{2\pi}\cdot\dfrac{P_{out}}{N}=9.55\dfrac{P_{out}}{N}
\end{aligned}\]
\(N_s\) \(N\)
\[\begin{aligned}
\mbox{Stator input}~P_{1} & =\mbox{stator output+stator
losses}\\
\mbox{Rotor input}~P_{2} & =\mbox{stator output}\\
\mbox{Rotor gross output}~P_{m} & =\mbox{rotor
input}~P_{2}-\mbox{rotor Cu losses}
\end{aligned}\]
Relations:
\[P_{2}:P_{m}:P_{cr}::1:\left(1-s\right):s\]
Induction Motor Torque Equation
\[\begin{aligned}
T_{g} & =P_{2}/2\pi N_{s}\cdots\cdots N_{s}~\mbox{in
r.p.s}\\
& =60P_{2}/2\pi N_{s}=9.55P_{2}/N_{s}\cdots\cdots
N_{s}~\mbox{in r.p.m}\\
P_{2} & =3I_{2}^{2}R_{2}/s\\
&
=3\times\left[\dfrac{sE_{2}}{\sqrt{R_{2}^{2}+\left(sX_{2}\right)^{2}}}\right]^{2}\times\dfrac{R_{2}}{s}\\
&
=\dfrac{3sE_{2}^{2}R_{2}}{R_{2}^{2}+\left(sX_{2}\right)^{2}}
\end{aligned}\]
\[\begin{aligned}
\therefore T_{g} & =\dfrac{P_{2}}{2\pi N_{s}}\\
& =\dfrac{3}{2\pi
N_{s}}\times\dfrac{sE_{2}^{2}R_{2}}{\left[R_{2}^{2}+\left(sX_{2}\right)^{2}\right]}\cdots\cdots\mbox{in
terms of }E_{2}\\
& =\dfrac{3}{2\pi
N_{s}}\times\dfrac{sK^{2}E_{1}^{2}R_{2}}{\left[R_{2}^{2}+\left(sX_{2}\right)^{2}\right]}\cdots\cdots\mbox{in
terms of }E_{1}\\
k & =\dfrac{3K^{2}}{2\pi N_{s}}=\mbox{constant of the
given machine}\\
\Longrightarrow T_{g} &
=k\dfrac{sE_{1}^{2}R_{2}}{R_{2}^{2}+\left(sX_{2}\right)^{2}}\cdots\cdots\mbox{in
trems of }E_{1}
\end{aligned}\]
Synchronous Watt
\[\begin{aligned}
T_{sw} & =\dfrac{P_{2}}{2\pi N_{s}}\\
& =\dfrac{1}{\omega_{s}}\cdot\dfrac{N_{s}}{N}\cdot
P_{g}=\dfrac{1}{\omega_{s}}\cdot\dfrac{N_{s}}{N}\cdot P_{m}
\end{aligned}\]
Synchronous watt is that torque which, at the synchronous speed
of the machine under consideration, would develop a power of 1 watt
\[\mbox{=rotor input=}\dfrac{\mbox{rotor Cu
loss}}{s}=\dfrac{P_{m}}{\left(1-s\right)}\]
Torque in synchronous watt