Demystifying Single-Phase Motors: Unveiling the Principle of Operation

Demonstrative Video


Principle of Operation

Double Revolving Field Theory

image

The resultant air-gap mmf whose axis is fixed in space: \[\begin{aligned} \mathcal{F}_{ag} & = F_{\mathrm{max}}\cos(\theta)\cos(\omega t)\\ & = \dfrac{1}{2}F_{\mathrm{max}}\cos(\theta - \omega t) + \dfrac{1}{2}F_{\mathrm{max}}\cos(\theta + \omega t) \\ & = \mathcal{F}^{+}_{ag} + \mathcal{F}^{-}_{ag}\\ & = \text{Forward mmf} + \text{ Backward mmf} \end{aligned}\]

\[\begin{aligned} \dfrac{1}{2}F_{\mathrm{max}}: &~ \text{Max. value of mmf} \\ \omega : & ~ \text{Frequency of the stator current} \\ \theta : & ~ \text{Space displacement angle from stator winding axis}\\ +: &~ \text{the direction in which motor started initially} \end{aligned}\]