Understanding Salient Pole Alternators: Unveiling Two-Reaction Theory

Demonstrative Video


Operation of Salient-Pole Machine

  • \(\Rightarrow\) uniform air-gap \(\Rightarrow\) reactance remains the same irrespective of the spatial position of the rotor \(\Rightarrow\) possess one axis of symmetry (pole or direct axis)

  • \(\Rightarrow\) non-uniform air-gap \(\Rightarrow\) reactance varies \(\Rightarrow\) two axes

    • field pole axis (direct or d-axis)

    • axis passing through center of inter-polar space (quadrature or q-axis)

image
  • d-axis \(\Rightarrow\) Both field and armature mmfs

  • q-axis \(\Rightarrow\) Only armature mmf


Two-Reaction Theory (proposed by Blondel)

image

\[\begin{aligned} \mbox{internal power-factor angle,}~\Psi & =\mbox{between}~E_{0}~\mbox{and}~I_{a}\\ \mbox{power angle,}~\delta & =\mbox{between}~E_{0}~\mbox{and}~V\\ E_{0} & =V+I_{a}R_{a}+jI_{d}X_{d}+jI_{q}X_{q}\\ I_{a} & =I_{d}+I_{q} \end{aligned}\]

\[\begin{aligned} I_{d} & =I_{a}\sin\Psi\\ I_{q} & =I_{a}\cos\Psi\\ \tan\Psi & =\dfrac{AD+AC}{OE+ED}\\ & =\dfrac{V\sin\Phi+I_{a}X_{q}}{V\cos\Phi+I_{a}R_{a}}~\mbox{generating}\\ & =\dfrac{V\sin\Phi-I_{a}X_{q}}{V\cos\Phi-I_{a}R_{a}}~\mbox{motoring}\\ \delta & =\Psi-\Phi~\mbox{generating}\\ & =\Phi-\Psi~\mbox{motoring} \end{aligned}\]

image

\[\begin{aligned} E_{0} & =V\cos\delta+I_{q}R_{a}+I_{d}X_{d}~\mbox{generating}\\ & =V\cos\delta-I_{q}R_{a}-I_{d}X_{d}~\mbox{motoring} \end{aligned}\] If we neglect \(R_a\) \[\begin{aligned} V\sin\delta & =I_{q}X_{q}=I_{a}X_{q}\cos\left(\Phi\pm\delta\right)\\ \Rightarrow V\sin\delta & =I_{a}X_{q}\left(\cos\Phi\cos\delta\pm\sin\Phi\sin\delta\right)\\ \Rightarrow V & =I_{a}X_{q}\left(\cos\Phi\cot\delta\pm\sin\Phi\right)\\ \Rightarrow V\pm I_{a}X_{q}\sin\Phi & =I_{a}X_{q}\cos\Phi\cot\delta\\ \tan\delta & =\dfrac{I_{a}X_{q}\cos\Phi}{V\pm I_{a}X_{q}\sin\Phi} \end{aligned}\] \(+\) for generator and \(-\) for motor


Power Developed by Syn Generator

\[P_{d}=\dfrac{E_{0}V}{X_{d}}\sin\delta+\dfrac{V^{2}\left(X_{d}-X_{q}\right)}{2X_{d}X_{q}}\sin2\delta\]