⇒⇒ uniform air-gap ⇒⇒ reactance remains the same irrespective of the spatial position of the rotor ⇒⇒ possess one axis of symmetry (pole or direct axis)
⇒⇒ non-uniform air-gap ⇒⇒ reactance varies ⇒⇒ two axes
field pole axis (direct or d-axis)
axis passing through center of inter-polar space (quadrature or q-axis)
d-axis ⇒⇒ Both field and armature mmfs
q-axis ⇒⇒ Only armature mmf
Ia⇒Ia⇒ [Id⊥E0][Id⊥E0] and [Iq along E0][Iq along E0]
armature reactance ⇒⇒ q-axis (XadXad) associated with IdId and d-axis (XaqXaq) associated with IqIq
XLXL remains same for both axes, we get Xd=Xad+XLandXq=Xaq+XL
q-axis reluctance higher owing to larger air-gap, Xd>Xq
internal power-factor angle, Ψ=between E0 and Iapower angle, δ=between E0 and VE0=V+IaRa+jIdXd+jIqXqIa=Id+Iq
Id=IasinΨIq=IacosΨtanΨ=AD+ACOE+ED=VsinΦ+IaXqVcosΦ+IaRa generating=VsinΦ−IaXqVcosΦ−IaRa motoringδ=Ψ−Φ generating=Φ−Ψ motoring
E0=Vcosδ+IqRa+IdXd generating=Vcosδ−IqRa−IdXd motoring If we neglect Ra Vsinδ=IqXq=IaXqcos(Φ±δ)⇒Vsinδ=IaXq(cosΦcosδ±sinΦsinδ)⇒V=IaXq(cosΦcotδ±sinΦ)⇒V±IaXqsinΦ=IaXqcosΦcotδtanδ=IaXqcosΦV±IaXqsinΦ + for generator and − for motor
Neglecting Ra and hence Cu loss, per-phase power developed (Pd): Pd=VIacosΦIqXq=Vsinδ; IdXd=E0−VcosδId=Iasin(Φ+δ); Iq=Iacos(Φ+δ)
Substituting Eq. (3) in (1) and solving Iacosϕ=VXdsinδ+V2Xqsin2δ−V2Xdsin2δ
Finally, Substituting in Eq. (1), we get Pd=E0VXdsinδ+V2(Xd−Xq)2XdXqsin2δ
The total power = 3×Pd
Pd=E0VXdsinδ+V2(Xd−Xq)2XdXqsin2δ
Pd consists of power due to (first term) + (second term)
If Xd=Xq, for cylindrical rotor, second term = 0, and the power is due to first
If no field excitation, E0=0, then first term = 0, and power is due to second