Understanding Salient Pole Alternators: Unveiling Two-Reaction Theory

Demonstrative Video


Operation of Salient-Pole Machine

  • uniform air-gap reactance remains the same irrespective of the spatial position of the rotor possess one axis of symmetry (pole or direct axis)

  • non-uniform air-gap reactance varies two axes

    • field pole axis (direct or d-axis)

    • axis passing through center of inter-polar space (quadrature or q-axis)

image
  • d-axis Both field and armature mmfs

  • q-axis Only armature mmf


Two-Reaction Theory (proposed by Blondel)

image

internal power-factor angle, Ψ=between E0 and Iapower angle, δ=between E0 and VE0=V+IaRa+jIdXd+jIqXqIa=Id+Iq

Id=IasinΨIq=IacosΨtanΨ=AD+ACOE+ED=VsinΦ+IaXqVcosΦ+IaRa generating=VsinΦIaXqVcosΦIaRa motoringδ=ΨΦ generating=ΦΨ motoring

image

E0=Vcosδ+IqRa+IdXd generating=VcosδIqRaIdXd motoring If we neglect Ra Vsinδ=IqXq=IaXqcos(Φ±δ)Vsinδ=IaXq(cosΦcosδ±sinΦsinδ)V=IaXq(cosΦcotδ±sinΦ)V±IaXqsinΦ=IaXqcosΦcotδtanδ=IaXqcosΦV±IaXqsinΦ + for generator and for motor


Power Developed by Syn Generator

Pd=E0VXdsinδ+V2(XdXq)2XdXqsin2δ