Rotating Magnetic Field Magic: 3-Phase Induction Motor Heartbeat

Demonstrative Video


Production of Rotating Field

The instantaneous value of flux: \[\begin{aligned} \Phi_{P} & =\Phi_{m}\sin\theta\\ \Phi_{Q} & =\Phi_{m}\sin\left(\theta-90^\circ\right) \end{aligned}\] image

\[\begin{aligned} \Phi_{P} & =0; ~ \Phi_{Q} =-\Phi_{m}\\ \Phi & =\sqrt{P^{2}+Q^{2}-2PQ\cos{\theta}}\\ & =\sqrt{0+\left(-\Phi_{m}\right)^{2}-0}\\ & =\Phi_{m} \end{aligned}\] \[\begin{aligned} \Phi_{P} & =\Phi_{m}/\sqrt{2} ; ~ \Phi_{Q} =-\Phi_{m}/\sqrt{2}\\ \Phi & =\sqrt{P^{2}+Q^{2}-2PQ\cos{\theta}}\\ = & \sqrt{\left(\Phi_{m}/\sqrt{2}\right)^{2}+\left(-\Phi_{m}/\sqrt{2}\right)^{2}+0}\\ & =\Phi_{m} \end{aligned}\]

\[\begin{aligned} \Phi_{P} & =\Phi_{m} ; ~ \Phi_{Q} = 0\\ \Phi & =\sqrt{P^{2}+Q^{2}-2PQ\cos{\theta}}\\ = & \sqrt{\left(\Phi_{m}\right)^{2}+0}\\ & =\Phi_{m} \end{aligned}\] \[\begin{aligned} \Phi_{P} & =-\Phi_{m}/\sqrt{2}; ~ \Phi_{Q} = \Phi_{m}/\sqrt{2}\\ \Phi & =\sqrt{P^{2}+Q^{2}-2PQ\cos{\theta}}\\ =& \sqrt{\left(-\Phi_{m}/\sqrt{2}\right)^{2}+\left(\Phi_{m}/\sqrt{2}\right)^{2}+0}\\ & =\Phi_{m} \end{aligned}\]

Conclusion:

image
image
image
image

Conclusion:

Why does the Rotor rotates?

image