Unleashing Rotational Force: Understanding Production of Torque

Demonstrative Video


Production of Torque


In Case of Permanent Magnet

\[\begin{aligned} \theta &=\text { angle between the axis of two fields } F_{m} \text { and } F_{r^{\prime}} \\ l &=\text { length of magnet } A . \\ r &=\text { radius of circle in which rotation takes place. } \\ F &=\text { force acting on north and south pole of magnet } A . \\ \text { Torque } &=\text { Force } \times \text { Perpendicular distance. } \end{aligned}\] image

\[\begin{aligned} \text{In a right angled triangle 'oab'} ~ab&=oa\sin\theta \\ \text{Distance perpendicular to force}, ab &= r \sin \theta \end{aligned}\] \[\begin{aligned} \text{Torque} & = 2F \times r\sin\theta = 2F \times \dfrac{l}{2}\sin\theta \\ T & = Fl\sin\theta ~[F=\dfrac{m_1m_2}{4\pi\mu_0\mu_rd^2}] \\ T & = K\sin\theta ~~[\text{where}~K=F\times l~\text{is constant}]\\ T &\propto \sin \theta ~~[\text{maximum}~\theta=90^{\circ}] \end{aligned}\]


In Case of Electromagnet

\[\begin{aligned} F &=\text { Force acting on the two conductors. } \\ r &=\text { radius of circle in which conductor rotates. } \\ \theta &=\text { angle between the field } F_{m} \text { and } F_{r^{\prime}} \end{aligned}\] image

\[\begin{aligned} T&=2 B I l r \sin \theta\\ T&=K_{L} \sin \theta \quad\left[\text { Where, } K_{l}=2 B I l r \text { is a constant }\right]\\ T &\propto \sin \theta \end{aligned}\]


Production of Unidirectional Torque