DC Motor: Speed, Torque, & Power


Demonstrative Video


Dc Motor Basic Operational Video


Back EMF in DC Motor

image
  • \(I\) carrying conductor \(\Rightarrow\) \(B\) \(\Rightarrow\) \(T\) induce \(\Rightarrow\) rotates conductor \(\Rightarrow\) cuts \(\Phi\) \(\Rightarrow\) EMF induce

  • Direction of induced EMF is opposite to \(V\) \(\Rightarrow\) Counter or Back EMF

  • \(E_b\) series with \(V\) but opposite in direction, i.e. oppose \(I\) which causes it

Advantage of Back EMF

  1. Electrical to Mechanical energy (\(E_bI_a\)) conversion is possible only because of \(E_b\).

  2. \(E_b\) makes dc motor self-regulating \(\Rightarrow\) \(I=\dfrac{V-E_b}{R_a}\)

    • No load \(\Rightarrow\) requires small \(T\) \(\Rightarrow\) for controlling friction and windage loss \(\Rightarrow\) withdraws less \(I\) \(\Rightarrow\) \(E_b \downarrow\)

    • load \(\uparrow\) \(\Rightarrow\) \(\left(T_m<T_L\right)\) \(\Rightarrow\) \(N \downarrow\) \(\Rightarrow\) \(E_b \downarrow\) \(\Rightarrow\) \(I \uparrow\) \(\Rightarrow\) \(T \uparrow\)

    • load \(\downarrow\) \(\Rightarrow\) \(\left(T_m>T_L\right)\) \(\Rightarrow\) \(N \uparrow\) \(\Rightarrow\) \(E_b \uparrow\) \(\Rightarrow\) \(I \downarrow\) \(\Rightarrow\) \(T \downarrow\)

Condition for Maximum Power, \(P_m\)

\[\begin{aligned} P_{m} & =VI_{a}-I_{a}^{2}R_{a}\nonumber\\ \Rightarrow\dfrac{dP_{m}}{dI_{a}} & =V-2I_{a}R_{a}=0 \Rightarrow I_{a}R_{a} =\dfrac{V}{2} \\ \therefore V & = E_{b}+ I_{a}R_{a} = E_{b}+\dfrac{V}{2} \Rightarrow \boxed{E_{b} =\dfrac{V}{2}}\nonumber \end{aligned}\]

Torque Equation of a DC Motor

image \[\begin{aligned} P_{m} & \Rightarrow E_{b}I_{a}=T_{a}\omega\\ & \Rightarrow\left(\dfrac{\Phi PN}{60}\times\dfrac{Z}{A}\right)I_{a}=T_{a}\left(\dfrac{2\pi N}{60}\right)\\ & \Rightarrow T_{a}=\dfrac{1}{2\pi}\times\dfrac{\Phi PZ}{A}\times I_{a}\\ & \boxed{T_{a} =K_{a}\phi I_{a}}\\ T_{sh} & =T_{a}-\mbox{mechanical losses} \end{aligned}\]

For series motor: \(\Phi \propto I_a \Rightarrow T_a \propto I_a^2\)

For shunt motor: \(\Phi =\) constant \(\Rightarrow T_a \propto I_a\)

Speed of a DC Motor

\[\begin{aligned} E_{b} & =V-I_{a}R_{a}\\ \Rightarrow\dfrac{\Phi PN}{60}\times\left(\dfrac{Z}{A}\right) & =V-I_{a}R_{a}\\ \Rightarrow N & =\dfrac{V-I_{a}R_{a}}{\Phi}\times\left(\dfrac{60A}{ZP}\right)\\ \Rightarrow N & =\dfrac{E_{b}}{\Phi}\times\left(\dfrac{60A}{ZP}\right)\\ \Rightarrow & \boxed{N =K\dfrac{E_{b}}{\Phi}} \end{aligned}\] \(\boxed{N\propto E_b}\) and \(\boxed{N \propto 1/\Phi}\) \[\dfrac{N_{2}}{N_{1}}=\dfrac{E_{b2}}{E_{b1}}\times\dfrac{\Phi_{1}}{\Phi_{2}}=\dfrac{E_{b2}}{E_{b1}}\times\dfrac{I_{a1}}{I_{a2}}\]

\[\begin{aligned} & \boxed{N =K\dfrac{E_{b}}{\Phi}}\\ & \boxed{T_{a} \propto\Phi I_{a}} \end{aligned}\]

Relation between Torque and Speed

  • \(T_a\) is function of \(\Phi\) and \(I_a\) but independent of \(N\)

  • \(N\) depends on \(T\) and not vice-versa

  • \(\Phi \uparrow \Rightarrow N \downarrow\) but \(T_a \uparrow\) not possiblebecause \(T\) always tends to produce rotation. If \(T \uparrow\), \(N\) must \(\uparrow\) rather than \(\downarrow\)

Following Sequence happens:

Speed Regulation

Change in speed when the load on the motor is reduced from rated value to zero, expressed as percent of the rated load speed \[\% \mbox{speed regulation} = \dfrac{N.L~speed - F.L~speed}{F.L~speed} \times 100\]