|
Electrical to Mechanical energy (\(E_bI_a\)) conversion is possible only because of \(E_b\).
\(E_b\) makes dc motor self-regulating \(\Rightarrow\) \(I=\dfrac{V-E_b}{R_a}\)
No load \(\Rightarrow\) requires small \(T\) \(\Rightarrow\) for controlling friction and windage loss \(\Rightarrow\) withdraws less \(I\) \(\Rightarrow\) \(E_b \downarrow\)
load \(\uparrow\) \(\Rightarrow\) \(\left(T_m<T_L\right)\) \(\Rightarrow\) \(N \downarrow\) \(\Rightarrow\) \(E_b \downarrow\) \(\Rightarrow\) \(I \uparrow\) \(\Rightarrow\) \(T \uparrow\)
load \(\downarrow\) \(\Rightarrow\) \(\left(T_m>T_L\right)\) \(\Rightarrow\) \(N \uparrow\) \(\Rightarrow\) \(E_b \uparrow\) \(\Rightarrow\) \(I \downarrow\) \(\Rightarrow\) \(T \downarrow\)
\[\begin{aligned} P_{m} & =VI_{a}-I_{a}^{2}R_{a}\nonumber\\ \Rightarrow\dfrac{dP_{m}}{dI_{a}} & =V-2I_{a}R_{a}=0 \Rightarrow I_{a}R_{a} =\dfrac{V}{2} \\ \therefore V & = E_{b}+ I_{a}R_{a} = E_{b}+\dfrac{V}{2} \Rightarrow \boxed{E_{b} =\dfrac{V}{2}}\nonumber \end{aligned}\]
\[\begin{aligned} P_{m} & \Rightarrow E_{b}I_{a}=T_{a}\omega\\ & \Rightarrow\left(\dfrac{\Phi PN}{60}\times\dfrac{Z}{A}\right)I_{a}=T_{a}\left(\dfrac{2\pi N}{60}\right)\\ & \Rightarrow T_{a}=\dfrac{1}{2\pi}\times\dfrac{\Phi PZ}{A}\times I_{a}\\ & \boxed{T_{a} =K_{a}\phi I_{a}}\\ T_{sh} & =T_{a}-\mbox{mechanical losses} \end{aligned}\]
For series motor: \(\Phi \propto I_a \Rightarrow T_a \propto I_a^2\)
For shunt motor: \(\Phi =\) constant \(\Rightarrow T_a \propto I_a\)
\[\begin{aligned} E_{b} & =V-I_{a}R_{a}\\ \Rightarrow\dfrac{\Phi PN}{60}\times\left(\dfrac{Z}{A}\right) & =V-I_{a}R_{a}\\ \Rightarrow N & =\dfrac{V-I_{a}R_{a}}{\Phi}\times\left(\dfrac{60A}{ZP}\right)\\ \Rightarrow N & =\dfrac{E_{b}}{\Phi}\times\left(\dfrac{60A}{ZP}\right)\\ \Rightarrow & \boxed{N =K\dfrac{E_{b}}{\Phi}} \end{aligned}\] \(\boxed{N\propto E_b}\) and \(\boxed{N \propto 1/\Phi}\) \[\dfrac{N_{2}}{N_{1}}=\dfrac{E_{b2}}{E_{b1}}\times\dfrac{\Phi_{1}}{\Phi_{2}}=\dfrac{E_{b2}}{E_{b1}}\times\dfrac{I_{a1}}{I_{a2}}\]
\[\begin{aligned} & \boxed{N =K\dfrac{E_{b}}{\Phi}}\\ & \boxed{T_{a} \propto\Phi I_{a}} \end{aligned}\]
\(T_a\) is function of \(\Phi\) and \(I_a\) but independent of \(N\)
\(N\) depends on \(T\) and not vice-versa
\(\Phi \uparrow \Rightarrow N \downarrow\) but \(T_a \uparrow\) not possiblebecause \(T\) always tends to produce rotation. If \(T \uparrow\), \(N\) must \(\uparrow\) rather than \(\downarrow\)
Following Sequence happens:
Suppose \(\Phi\) is \(\downarrow\) by \(I_f \downarrow\)
\(\left[E_b \propto N\Phi\right] \downarrow\), \(N\) = constant (inertia of heavy armature)
\(E_b \downarrow \Rightarrow \left[I_a = (V-E_b)/R_a\right] \uparrow\). Moreover, \(\Phi \downarrow \Rightarrow I_a \uparrow \uparrow\)
\(T_a \propto \Phi I_a\), \(\Phi \downarrow\) is counterbalanced by \(I_a \uparrow \uparrow\), result \(T_a \uparrow\)
\(T_a \uparrow \Rightarrow N \uparrow\)
Change in speed when the load on the motor is reduced from rated value to zero, expressed as percent of the rated load speed \[\% \mbox{speed regulation} = \dfrac{N.L~speed - F.L~speed}{F.L~speed} \times 100\]