Unleash DC Machine Power: Working Principle & EMF Equation Explained

Demonstrative Video



Working Principle


Generation of EMF


Equation of Generated EMF

\[\begin{aligned} \Phi & =\mbox{flux/pole in weber}\\ Z & =\mbox{total number of armature conductors}\\ & =\mbox{No. of slots }\times\mbox{No. of conductors/slot}\\ P & =\mbox{No. of generated poles}\\ A & =\mbox{No. of parallel paths in armature}\\ N & =\mbox{armature rotation in rpm}\\ E & =\mbox{emf induced in any parallel path in armature}\\ E_{g} & =\mbox{generated emf in any one of the paralel paths} \end{aligned}\]

\[\begin{aligned} \mbox{Average emf generated/conductor} & =d\Phi/dt~\mbox{volt}~\left(\because n=1\right)\\ \mbox{flux cut/conductor in one revolution }d\Phi & =\Phi P~\mbox{Wb}\\ \mbox{No. of revolutions/second} & =N/60\\ \Rightarrow\mbox{Time for one revolution}~dt & =60/N~\mbox{second}\\ \mbox{EMF generated/conductor} & =\dfrac{d\Phi}{dt}=\dfrac{\Phi PN}{60}~\mbox{volt}\\ \mbox{No. of parallel paths} & = A\\ \mbox{No. of conductors (in series) in one path} & = Z/2 \\ \therefore \mbox{EMF generated/path} & = \boxed{{\dfrac{\Phi PN}{60}} \times {\dfrac{Z}{A}}}\\ A & =2\cdots\cdots\mbox{wave-wound}\\ A & =P\cdots\cdots\mbox{lap-wound} \end{aligned}\] For a given dc machine \(Z,~P\) and \(A\) are constants, therefore \[E_g = K_a \times \dfrac{\Phi N}{60} = \boxed{K_a \Phi N} \cdots\cdots\mbox{N in rps}\]