Formula Sheet: Three-Phase Synchronous Machines
Nomenclature
\[\begin{array}{|l|l|}
\hline
\textbf{Symbol} & \textbf{Description} \\
\hline
V_t & \text{Terminal voltage (line or phase)} \\
E & \text{Induced EMF per phase} \\
f & \text{Frequency (Hz)} \\
n_s & \text{Synchronous speed (RPM)} \\
p & \text{Number of poles} \\
I_a & \text{Armature current per phase} \\
R_a & \text{Armature resistance per phase} \\
X_s & \text{Synchronous reactance per phase} \\
Z_s & \text{Synchronous impedance} \\
\phi & \text{Power factor angle} \\
\delta & \text{Load angle (power angle)} \\
\phi_m & \text{Flux per pole (Weber)} \\
k_w & \text{Winding factor} \\
K_p & \text{Pitch factor} \\
K_d & \text{Distribution factor} \\
k_h & \text{Harmonic factor for harmonic order \( h \)} \\
P & \text{Output power (kW)} \\
T & \text{Torque (Nm)} \\
\eta & \text{Efficiency (%)} \\
B_m & \text{Peak flux density (T)} \\
l & \text{Active length of armature conductor (m)} \\
D & \text{Diameter of the armature (m)} \\
z & \text{Number of slots} \\
\hline
\end{array}\]
1. Fundamental
Relationships
\[\begin{aligned}
&\text{Synchronous Speed:} \quad n_s = \frac{120 f}{p} \quad
\text{(RPM)} \\
&\text{Frequency in Terms of Speed:} \quad f = \frac{p n_s}{120}
\quad \text{(Hz)}
\end{aligned}\]
2. EMF Equation
of Alternator
\[\begin{aligned}
&\text{Induced EMF per Phase (Fundamental):} \quad E = 4.44 f
\phi_m T_p k_w \\
&\text{Winding Factor:} \quad k_w = K_p \cdot K_d \\
&\text{Pitch Factor (\( K_p \)):} \quad K_p = \cos \left(
\frac{\alpha}{2} \right) \\
&\text{Distribution Factor (\( K_d \)):} \quad K_d = \frac{\sin
\left( \frac{m \beta}{2} \right)}{m \sin \left( \frac{\beta}{2} \right)}
\\
&\text{No-Load Induced EMF (\( E_0 \)):} \quad E_0 = \sqrt{3} E
\end{aligned}\]
3.
Armature Reaction and Voltage Regulation
\[\begin{aligned}
&\text{Synchronous Impedance:} \quad Z_s = \sqrt{R_a^2 + X_s^2}
\\
&\text{Voltage Regulation (at No Load):} \quad \text{Voltage
Regulation} = \frac{|E| - |V_t|}{|V_t|} \times 100\% \\
&\text{Armature Current:} \quad I_a = \frac{E - V_t}{Z_s}
\end{aligned}\]
4. Harmonics in
Alternators
\[\begin{aligned}
&\text{Harmonic EMF (for \( h^{th} \) order harmonic):} \quad
E_h = E \cdot k_h \\
&\text{Harmonic Factor:} \quad k_h = K_p \cdot K_d \cdot
\frac{1}{h}, \quad h = 1, 3, 5, \dots \\
&\text{Harmonic Frequency:} \quad f_h = h \cdot f \\
&\text{Chording Angle for Eliminating \( h \)-order Harmonic:}
\quad \alpha = \frac{180^\circ}{h}
\end{aligned}\]
5. Power and
Torque in Alternators
\[\begin{aligned}
&\text{Power Output of Alternator:} \quad P = \sqrt{3} V_t I_a
\cos \phi \\
&\text{Power Developed by the Alternator:} \quad P_d = \frac{3 E
V_t}{X_s} \sin \delta \\
&\text{Electromagnetic Torque:} \quad T = \frac{P}{\omega_m} =
\frac{3 E V_t}{\omega_m X_s} \sin \delta
\end{aligned}\]
\[\begin{aligned}
&\text{Mechanical Power Output:} \quad P_m = T \cdot \omega_m \\
&\text{Input Power:} \quad P_{in} = \sqrt{3} V_t I_a \cos \phi
\\
&\text{Power Factor Adjustment:} \quad \text{Overexcited:
Leading, Underexcited: Lagging}
\end{aligned}\]
7. Losses and
Efficiency
\[\begin{aligned}
&\text{Losses in Alternators:} \quad P_{loss} = P_{cu} +
P_{core} + P_{mech} \\
&P_{cu} = 3 I_a^2 R_a, \quad P_{core} = k_c f^2 B_m^2, \quad
P_{mech} = k_m n^3 \\
&\text{Efficiency of Alternator:} \quad \eta =
\frac{P_{out}}{P_{in}} \times 100\%
\end{aligned}\]
\[\begin{aligned}
&\text{Synchronizing Power Coefficient:} \quad P_{sync} =
\frac{dP}{d\delta} = \frac{3 V_t^2}{\omega_s X_s} \cos \delta \\
&\text{Reactance Voltage:} \quad V_x = I_a X_s \\
&\text{Flux per Pole:} \quad \phi_m = \frac{B_m \cdot \pi D
l}{p}
\end{aligned}\]