Single-Phase Transformer Formulas

Complete Quick Reference Guide for Electrical Engineering

Nomenclature and Symbols

\(V_p, V_s\) - Primary/Secondary Voltage
\(I_p, I_s\) - Primary/Secondary Current
\(N_p, N_s\) - Primary/Secondary Turns
\(R_p, R_s\) - Primary/Secondary Resistance
\(X_p, X_s\) - Primary/Secondary Reactance
\(Z_p, Z_s\) - Primary/Secondary Impedance
\(E_p, E_s\) - Primary/Secondary Induced EMF
\(P_p, P_s\) - Primary/Secondary Power
\(S_p, S_s\) - Primary/Secondary Apparent Power
\(P_i, P_c\) - Iron Loss/Copper Loss
\(\Phi_m\) - Maximum Flux
\(K\) - Turns Ratio
\(f\) - Frequency (Hz)
\(B_m\) - Maximum Flux Density
\(A\) - Core Cross-sectional Area
\(\eta\) - Efficiency

Transformer Basics

$\text{Turns Ratio: } K = \frac{N_s}{N_p} = \frac{V_s}{V_p} = \frac{I_p}{I_s}$
$P_p = P_s \text{ (Ideal)}$ $S_p = S_s$
$P = V \cdot I \cdot \cos \phi$ $\text{KVA} = \frac{V \cdot I}{1000}$

Transformer EMF Equation

$E = 4.44 f N \Phi_m = 4.44 f N B_m A$
$E_1 = 4.44 f N_1 \Phi_m$
Primary EMF
$E_2 = 4.44 f N_2 \Phi_m$
Secondary EMF
Where:
\(f\) = Frequency (Hz), \(N\) = Number of turns, \(\Phi_m\) = Maximum flux (Wb)
\(B_m\) = Maximum flux density (T), \(A\) = Core area (m²)

Transformer on No-Load

$W_0 = V_1 I_0 \cos(\Phi_0)$ $I_w = I_0 \cos(\Phi_0) \quad \text{(Working component)}$ $I_m = I_0 \sin(\Phi_0) \quad \text{(Magnetizing component)}$ $I_0 = \sqrt{I_w^2 + I_m^2}$

Transformer on Load

$I_p' = \frac{N_2}{N_1} I_s = K I_s$ $\vec{I_p} = \vec{I_0} + \vec{I_p'}$
Note: \(I_p'\) is the load component of primary current that balances the secondary current effect.

Equivalent Circuit Parameters

Impedance Referred to Primary Side:
$R_{01} = R_1 + R_2' = R_1 + \frac{R_2}{K^2}$ $X_{01} = X_1 + X_2' = X_1 + \frac{X_2}{K^2}$ $Z_{01} = \sqrt{R_{01}^2 + X_{01}^2}$
Impedance Referred to Secondary Side:
$R_{02} = R_2 + R_1' = R_2 + K^2 R_1$ $X_{02} = X_2 + X_1' = X_2 + K^2 X_1$ $Z_{02} = \sqrt{R_{02}^2 + X_{02}^2}$

Voltage Regulation

$\text{Voltage Regulation (\%)} = \frac{E_2 - V_2}{V_2} \times 100$ $= \frac{I_2 R_{02} \cos\theta_2 \pm I_2 X_{02} \sin\theta_2}{V_2} \times 100$ $= v_r \cos\phi \pm v_x \sin\phi$
Sign Convention:
(+) for lagging power factor
(−) for leading power factor
$v_r = \frac{I_2 R_{02}}{V_2} \times 100$
Resistive Drop %
$v_x = \frac{I_2 X_{02}}{V_2} \times 100$
Reactive Drop %

Open Circuit Test (OC Test)

$\cos\Phi_0 = \frac{W_0}{V_1 I_0}$ $I_w = I_0 \cos\Phi_0 \quad ; \quad I_m = I_0 \sin\Phi_0$ $R_0 = \frac{V_1}{I_w} \quad ; \quad X_m = \frac{V_1}{I_m}$
Purpose: Determines iron losses (\(P_i\)) and magnetizing parameters

Short Circuit Test (SC Test)

$Z_{sc} = \frac{V_{sc}}{I_{sc}}$ $R_T = \frac{W_{sc}}{I_{sc}^2}$ $X_T = \sqrt{Z_{sc}^2 - R_T^2}$
Purpose: Determines copper losses (\(P_c\)) and equivalent impedance

Transformer Losses

Iron/Core Losses (Constant): $P_i = P_h + P_e$
  • \(P_h\) = Hysteresis loss
  • \(P_e\) = Eddy current loss
Copper Losses (Variable): $P_c = I_1^2 R_1 + I_2^2 R_2$ $= I_1^2 R_{01} = I_2^2 R_{02}$
$\text{Total Losses} = P_i + P_c$

Efficiency

$\eta = \frac{\text{Output Power}}{\text{Input Power}} = \frac{\text{Output}}{\text{Output + Losses}}$ $\eta = \frac{V_2 I_2 \cos\phi_2}{V_2 I_2 \cos\phi_2 + P_i + P_c} \times 100\%$
$\eta = \frac{x \cdot \text{KVA}_{FL} \cdot \cos\phi}{x \cdot \text{KVA}_{FL} \cdot \cos\phi + P_i + x^2 P_c} \times 100\%$
Where: \(x\) = Fraction of full load, \(\text{KVA}_{FL}\) = Full load KVA rating

Maximum Efficiency Condition

Condition for Maximum Efficiency:
Iron Loss = Copper Loss
$P_i = x^2 P_c$ $x = \sqrt{\frac{P_i}{P_c}}$
$I_2 = \sqrt{\frac{P_i}{R_T}}$ $\text{KVA at } \eta_{max} = x \times \text{KVA}_{FL} = \text{KVA}_{FL} \sqrt{\frac{P_i}{P_c}}$
Maximum Efficiency: $\eta_{max} = \frac{x \cdot \text{KVA}_{FL} \cdot \cos\phi}{x \cdot \text{KVA}_{FL} \cdot \cos\phi + 2P_i} \times 100\%$

All-Day Efficiency

$\eta_{all-day} = \frac{\text{Output in kWh}}{\text{Input in kWh}} \times 100\%$ $= \frac{\sum_{i=1}^{n} P_i t_i}{\sum_{i=1}^{n} P_i t_i + P_{iron} \times 24 + \sum_{i=1}^{n} P_{cu,i} t_i} \times 100\%$
Note: Used for distribution transformers that operate at varying loads throughout the day. Iron losses occur for full 24 hours.

Auto-Transformer Relations

$K = \frac{V_2}{V_1} = \frac{N_2}{N_1}$ $\text{Transformation Ratio: } a = \frac{V_2}{V_1} = \frac{N_1 + N_2}{N_1} = 1 + K$
$\text{Saving in Cu: } \frac{W_{auto}}{W_{two-winding}} = 1 - K$ $\text{Power transferred inductively} = K \times \text{Total Power}$ $\text{Power transferred conductively} = (1-K) \times \text{Total Power}$

Per Unit (p.u.) System

$\text{Per Unit Value} = \frac{\text{Actual Value}}{\text{Base Value}}$
$Z_{pu} = \frac{Z_{actual}}{Z_{base}}$ $Z_{base} = \frac{V_{base}^2}{S_{base}}$
$\%Z = Z_{pu} \times 100$ $Z_{pu} = \frac{I_{sc} Z}{V_{rated}}$

Parallel Operation of Transformers

Conditions for Parallel Operation:
  1. Same voltage ratio and polarity
  2. Same percentage impedance
  3. Same impedance angle (X/R ratio)
  4. Same phase sequence
$\text{Load shared by transformer A: } S_A = \frac{S_T \cdot Z_B}{Z_A + Z_B}$ $\text{Load shared by transformer B: } S_B = \frac{S_T \cdot Z_A}{Z_A + Z_B}$
Note: Load sharing is inversely proportional to impedances

Transformer Cooling Classifications

ONAN - Oil Natural Air Natural
ONAF - Oil Natural Air Forced
OFAF - Oil Forced Air Forced
ODAF - Oil Directed Air Forced
ODWF - Oil Directed Water Forced
AN - Air Natural (Dry type)

Key Points to Remember

  • Step-up transformer: \(N_s > N_p\), \(V_s > V_p\), \(I_s < I_p\)
  • Step-down transformer: \(N_s < N_p\), \(V_s < V_p\), \(I_s > I_p\)
  • Ideal transformer: No losses, \(\eta = 100\%\), \(V_pI_p = V_sI_s\)
  • OC test: Performed on LV side (convenient)
  • SC test: Performed on HV side (convenient)
  • Zero regulation: At leading power factor when \(I_2X_{02}\sin\phi = I_2R_{02}\cos\phi\)
  • Transformer rating: Always in KVA (not kW) because losses independent of load pf