Essential Formulas for Single-Phase Transformers
Nomenclature and
Symbols
\(V_p\) |
Primary Voltage |
\(V_s\) |
Secondary Voltage |
\(I_p\) |
Primary Current |
\(I_s\) |
Secondary Current |
\(N_p\) |
Number of Primary Turns |
\(N_s\) |
Number of Secondary Turns |
\(R_p\) |
Primary Resistance |
\(R_s\) |
Secondary Resistance |
\(X_p\) |
Primary Reactance |
\(X_s\) |
Secondary Reactance |
\(V_{p,\text{rms}}\) |
Primary RMS Voltage |
\(V_{s,\text{rms}}\) |
Secondary RMS Voltage |
\(I_{p,\text{rms}}\) |
Primary RMS Current |
\(I_{s,\text{rms}}\) |
Secondary RMS Current |
\(Z_p\) |
Primary Impedance |
\(Z_s\) |
Secondary Impedance |
\(Z_t\) |
Total Impedance |
\(P_p\) |
Primary Power |
\(P_s\) |
Secondary Power |
\(S_p\) |
Primary Apparent Power |
\(S_s\) |
Secondary Apparent Power |
\(E_p\) |
Primary Induced EMF |
\(E_s\) |
Secondary Induced EMF |
\(T_p\) |
Primary Turns |
\(T_s\) |
Secondary Turns |
\(P_c\) |
Core Losses |
\(P_l\) |
Load Losses |
\(P_e\) |
Efficiency |
\(R_e\) |
Equivalent Resistance |
\(X_e\) |
Equivalent Reactance |
\(\mathrm{KVA}_{\text{load}}\) |
Load KVA |
\(I_{\text{max-eff}}\) |
Current at Maximum Efficiency |
\(P_{\text{max-eff}}\) |
Power at Maximum Efficiency |
\[\begin{aligned}
\text{Turns Ratio} ~K&= \frac{N_s}{N_p} = \frac{V_s}{V_p} =
\frac{I_p}{I_s} \\
P_p &= P_s \\
S_p &= S_s \\
P_p &= V_p \cdot I_p \cdot \cos \phi_p \\
P_s &= V_s \cdot I_s \cdot \cos \phi_s \\
\text{KVA} &= \frac{V_s \cdot I_s}{1000} = \frac{V_p \cdot
I_p}{1000}\\
\end{aligned}\]
\[\begin{aligned}
E_1 &= 4.44fN_1\Phi_m = 4.44fN_1B_mA \\
E_2 &= 4.44fN_2\Phi_m = 4.44fN_2B_mA \\
\end{aligned}\]
\[\begin{aligned}
W_0 & =V_1 I_0 \cos \left(\Phi_0\right) \\
I_w & =I_0 \cos \left(\Phi_0\right) \\
I_m & =I_0 \sin \left(\Phi_0\right) \\
I_0 & =\sqrt{I_w^2+I_m^2}
\end{aligned}\]
\[\begin{aligned}&I_{p}^{'}=\left(\frac{N_{2}}{N_{1}}\right)I_{s}=KI_{s}\\&\overset{\to}{I_{p}}=\overset{\to}{I_{0}}+\overset{\to}{I_{p}^{'}}\end{aligned}\]
Total
Impedance and Parameters Referring to Primary/Secondary Side
\[\begin{aligned}
Z_1 & =\sqrt{\left(R_1^2+X_1^2\right)} \\
Z_2 & =\sqrt{\left(R_2^2+X_2^2\right)} \\
R_{01} & =R_1+R_2^{\prime}=R_1+R_2 / K^2 \\
R_{02} & =R_2+R_1^{\prime}=R_2+K^2 R_1 \\
X_2^{\prime} & =X_2 / K^2 \quad \text { and } \quad
X_1^{\prime}=K^2 X_1 \\
X_{01} & =X_1+X_2^{\prime} \quad \text { and } \quad
X_{02}=X_2+X_1^{\prime} \\
Z_{01} & =\sqrt{\left(R_{01}^2+X_{01}^2\right)} \\
Z_{02} & =\sqrt{\left(R_{02}^2+X_{02}^2\right)}
\end{aligned}\]
Approximate
Voltage Drops
\[\begin{aligned}
\% \text{voltage drop in secondary}=&
\frac{I_{2}R_{02}\cos\Phi\pm I_{2}X_{02}\sin\Phi}{_0V_{2}}\times100 \\
&=v_{r}cos\Phi\pm v_{x}sin\Phi \\
& + \quad \text{lagging}~\qquad - \quad \text{leading}\\
v_{r}&
=\frac{I_2R_{02}}{_0V_2}\times100=\frac{I_1R_{01}}{V_1}\times100=\text{percentage
resistive drop} \\
v_{x}&
=\frac{I_2X_{02}}{_0V_2}\times100=\frac{I_1X_{01}}{V_1}\times100=\text{percentage
reactive drop}
\end{aligned}\]
Open Circuit Test
\[\begin{aligned}
W_{0}& =V_{1}I_{0}\cos\Phi_{0} \\
\Rightarrow \cos\Phi_0 & =\frac{W_0}{V_1I_0} \\
\Rightarrow I_{w}& =I_0\cos\Phi_0 & \Rightarrow I_{m} &
=I_0\sin\Phi_0 \\
\Rightarrow R_{0}& =V_1/I_w & \Rightarrow X_{m} &
=V_1/I_m
\end{aligned}\]
Short Circuit Test
\[\begin{aligned}&Z_{sc}=\frac{V_{sc}}{I_{sc}}\\
& \Rightarrow R_T=\frac{W_{sc}}{I_{sc}^2} \\
&\Rightarrow X_T=\sqrt{Z_{sc}^2-R_T^2}\end{aligned}\]
\[\begin{aligned}
\text{voltage
regulation}~(\%)&=\frac{E_{2}-V_{2}}{V_{2}}\times100 \\
& = \dfrac{I_2R_2\cos\theta_2\pm I_2X_2\sin\theta_2}{V_{2}}
\end{aligned}\]
Losses and
Efficiency Conditions
\[\begin{aligned}\eta&=\frac{\text{output
power}}{\text{input power}}=\frac{\text{output power}}{\text{output
power}+\text{losses}}\\&=\frac{\text{output power}}{\text{output
power+iron losses}+\text{copper
losses}}\\&=\frac{V_2I_2\cos\Phi_2}{V_2I_2\cos\Phi_2+P_i+P_c}\end{aligned}\]
Condition
of Maximum Efficiency and Corresponding Current & Load KVA
\[\begin{aligned}
\text{Iron loss} & =P_i\\\text{Copper loss}&=x^2P_c\\
\text{For maximum efficiency }x^2P_c & =P_i\\
I_{2}&=\sqrt{\frac{P_{i}}{R_{T}}} \\
x&=\sqrt{\frac{P_{i}}{P_{c}}} \\
\eta_{m}& _{ax}=x\times KVA_{FL} \\
\Rightarrow\eta_{max}& =KVA_{FL}\times\sqrt{\frac{P_i}{P_c}}
\end{aligned}\]