Magnetism & Magnetic Circuit Formulas

A Comprehensive Guide for Electrical Engineers

Important Nomenclature and Notation

\[ \begin{aligned} \phi &= \text{magnetic flux in Wb (webers)} \\ B &= \text{magnetic flux density in T (tesla)} \\ H &= \text{magnetic field intensity in AT/m} \\ 1~\mathrm{T} &= 1~\mathrm{Wb/m^2} = 10,000~\text{gauss} \\ A &= \text{cross-sectional area in}~\mathrm{m^2} \\ \mathcal{F} &= \text{magnetomotive force (MMF) in AT (amp-turns)} \\ \mathcal{R} &= \text{reluctance of the material in AT/Wb} \\ P &= \text{permeance of the material in Wb/AT} \\ N &= \text{number of loops or turns in the coil} \\ I &= \text{current in the coil in A (amperes)} \\ l &= \text{average length of the material in m (meters)} \\ L &= \text{inductance of the coil in H (henry)} \\ \mu &= \text{permeability of the material in H/m} \\ \mu_0 &= \text{permeability of free space} = 4\pi \times 10^{-7}~\mathrm{H/m} \\ \mu_r &= \text{relative permeability (dimensionless)} \\ \chi_m &= \text{magnetic susceptibility (dimensionless)} \\ M &= \text{magnetization in A/m} \\ W_m &= \text{energy stored in magnetic field in J (joules)} \end{aligned} \]

Analogy: Electric Circuit vs Magnetic Circuit

Magnetic circuits follow similar principles to electric circuits, making analysis intuitive for electrical engineers.

Electric Circuit Magnetic Circuit Relationship
EMF (Electromotive force) \(\mathcal{E}\) MMF (Magnetomotive force) \(\mathcal{F}\) \(\mathcal{F} = NI\)
Current \(i\) Magnetic Flux \(\phi\) \(\phi = \frac{\mathcal{F}}{\mathcal{R}}\)
Resistance \(R\) Reluctance \(\mathcal{R}\) \(\mathcal{R} = \frac{l}{\mu A}\)
Conductance \(G\) Permeance \(P\) \(P = \frac{1}{\mathcal{R}}\)
Current Density \(J\) Flux Density \(B\) \(B = \frac{\phi}{A}\)
Ohm's Law: \(V = IR\) Hopkinson's Law: \(\mathcal{F} = \phi \mathcal{R}\) Analogous Laws

Fundamental Formulas

Magnetomotive Force (MMF)

\[ \mathcal{F} = NI \quad \text{(in ampere-turns)} \]
Definition: MMF is the driving force that produces magnetic flux in a magnetic circuit, analogous to EMF in electric circuits.

Magnetic Field Intensity

\[ H = \frac{\mathcal{F}}{l} = \frac{NI}{l} \quad \text{(in AT/m)} \]

Magnetic Flux

\[ \phi = \frac{\mathcal{F}}{\mathcal{R}} = \frac{NI}{\mathcal{R}} \]

Magnetic Flux Density

\[ \begin{aligned} B &= \frac{\phi}{A} \\ B &= \mu H = \mu_0 \mu_r H \end{aligned} \]

Permeability Relationships

\[ \begin{aligned} \mu &= \mu_0 \mu_r \\ \mu_r &= 1 + \chi_m \\ \mu_0 &= 4\pi \times 10^{-7}~\mathrm{H/m} \end{aligned} \]
Key Point: Relative permeability (\(\mu_r\)) values:

Reluctance

\[ \begin{aligned} \mathcal{R} &= \frac{l}{\mu_0 \mu_r A} = \frac{l}{\mu A} \\ \mathcal{R} &= \frac{\mathcal{F}}{\phi} = \frac{NI}{\phi} \end{aligned} \]

Induced EMF (Faraday's Law)

\[ e = -N \frac{d\phi}{dt} = -L \frac{di}{dt} \]

Inductance

\[ \begin{aligned} L &= N \frac{d\phi}{di} = \frac{N\phi}{I} \\ L &= \frac{\mu_0 \mu_r N^2 A}{l} = \frac{N^2}{\mathcal{R}} \\ L &= \frac{N^2 P}{\text{where } P = \frac{1}{\mathcal{R}} \text{ (permeance)}} \end{aligned} \]

Magnetic Materials Classification

1. Diamagnetic Materials

2. Paramagnetic Materials

3. Ferromagnetic Materials

4. Ferrimagnetic Materials

B-H Curve and Magnetic Hysteresis

B-H Curve Characteristics

\[ B = \mu_0 \mu_r H = \mu_0 (H + M) \]

Important Points on B-H Curve:

Hysteresis Loss

\[ \begin{aligned} W_h &= \eta B_{max}^{1.6} \cdot \text{Volume} \quad \text{(Steinmetz equation)} \\ P_h &= \eta f B_{max}^{1.6} \cdot \text{Volume} \quad \text{(power loss)} \end{aligned} \]
where \(\eta\) is Steinmetz hysteresis coefficient and \(f\) is frequency.

Types of Magnetic Materials by Hysteresis

Magnetic Circuits with Air Gap

Series Magnetic Circuit with Air Gap

\[ \begin{aligned} NI &= H_c l_c + H_g l_g \\ NI &= \frac{B_c}{\mu_c} l_c + \frac{B_g}{\mu_0} l_g \\ \mathcal{R}_{total} &= \mathcal{R}_c + \mathcal{R}_g = \frac{l_c}{\mu_c A_c} + \frac{l_g}{\mu_0 A_g} \end{aligned} \]
Important Note: Even a small air gap significantly increases the total reluctance because \(\mu_r\) of air = 1, while \(\mu_r\) of magnetic materials can be thousands.

Fringing Effect

In air gaps, magnetic flux spreads out beyond the core cross-section. This is called fringing. To account for this: \[ A_g^{effective} = (w + l_g)(d + l_g) \] where \(w\) and \(d\) are core dimensions and \(l_g\) is air gap length.

Series and Parallel Magnetic Circuits

Reluctances in Series

\[ \begin{aligned} \mathcal{R}_{total} &= \mathcal{R}_1 + \mathcal{R}_2 + \mathcal{R}_3 + \cdots + \mathcal{R}_N \\ \phi_{total} &= \phi_1 = \phi_2 = \phi_3 = \cdots = \phi_N \\ \mathcal{F}_{total} &= \mathcal{F}_1 + \mathcal{F}_2 + \mathcal{F}_3 + \cdots + \mathcal{F}_N \end{aligned} \]

Reluctances in Parallel

\[ \begin{aligned} \mathcal{R}_{total} &= \frac{1}{\frac{1}{\mathcal{R}_1} + \frac{1}{\mathcal{R}_2} + \frac{1}{\mathcal{R}_3} + \cdots + \frac{1}{\mathcal{R}_N}} \\ \phi_{total} &= \phi_1 + \phi_2 + \phi_3 + \cdots + \phi_N \\ \mathcal{F}_{total} &= \mathcal{F}_1 = \mathcal{F}_2 = \mathcal{F}_3 = \cdots = \mathcal{F}_N \end{aligned} \]

Flux Division in Parallel Paths

\[ \frac{\phi_1}{\phi_2} = \frac{\mathcal{R}_2}{\mathcal{R}_1} = \frac{l_1 \mu_2 A_2}{l_2 \mu_1 A_1} \]

Energy Storage in Magnetic Circuits

Energy Stored

\[ \begin{aligned} W_m &= \frac{1}{2} L I^2 \\ W_m &= \frac{1}{2} \mathcal{R} \phi^2 \\ W_m &= \frac{1}{2} \frac{\phi^2}{\mu A} l \\ W_m &= \frac{1}{2} \frac{B^2}{\mu} \cdot \text{Volume} \\ W_m &= \frac{1}{2} B H \cdot \text{Volume} \end{aligned} \]

Energy Density

\[ \begin{aligned} w_m &= \frac{W_m}{\text{Volume}} = \frac{1}{2} \frac{B^2}{\mu} = \frac{1}{2} \mu H^2 \\ w_m &= \frac{1}{2} B H \quad \text{(in J/m}^3\text{)} \end{aligned} \]
Application: Energy density is crucial in designing electromagnets, inductors, and magnetic actuators where energy storage capacity determines performance.

Force and Torque in Magnetic Systems

Magnetic Force on Current-Carrying Conductor

\[ \begin{aligned} \vec{F} &= I \vec{l} \times \vec{B} \\ F &= BIl \sin\theta \quad \text{(scalar form)} \\ F &= BIl \quad \text{(when perpendicular)} \end{aligned} \]

Force on Moving Charge

\[ \vec{F} = q(\vec{v} \times \vec{B}) \]

Force in Magnetic Circuit (Electromagnet)

\[ \begin{aligned} F &= \frac{B^2 A}{2\mu_0} = \frac{\phi^2}{2\mu_0 A} \\ F &= \frac{1}{2} \frac{d\mathcal{R}}{dx} \phi^2 = \frac{1}{2} I^2 \frac{dL}{dx} \end{aligned} \]

Torque on a Coil

\[ \begin{aligned} \tau &= NIBA \sin\theta \\ \tau &= \vec{m} \times \vec{B} \quad \text{where } \vec{m} = NIA\hat{n} \end{aligned} \]

Ampere's Circuital Law

\[ \begin{aligned} \oint \vec{H} \cdot d\vec{l} &= I_{enclosed} = NI \\ \oint \vec{B} \cdot d\vec{l} &= \mu_0 I_{enclosed} \end{aligned} \]

Applications:

Magnetic Flux Leakage

Leakage Factor (λ): Ratio of total flux produced to useful flux linking the circuit. \[ \lambda = \frac{\phi_{total}}{\phi_{useful}} = \frac{\phi_m + \phi_l}{\phi_m} \] where \(\phi_l\) is leakage flux.
Typical leakage factors: 1.15 to 1.25 for well-designed magnetic circuits.

Core Losses in Magnetic Materials

Total Core Loss

\[ P_{core} = P_h + P_e \]

Hysteresis Loss

\[ P_h = \eta f B_{max}^{1.6} \cdot V \quad \text{(watts)} \]

Eddy Current Loss

\[ P_e = K_e f^2 B_{max}^2 t^2 \cdot V \quad \text{(watts)} \]
where \(t\) is lamination thickness, \(V\) is volume, \(K_e\) is eddy current coefficient.
Reduction: Use thin laminations, high-resistivity materials, or ferrites at high frequencies.

Practical Design Considerations

Transformer Core Design

Inductor Design

Electromagnet Design

Maxwell's Equations for Magnetism

Gauss's Law for Magnetism

\[ \oint \vec{B} \cdot d\vec{A} = 0 \]
Interpretation: No magnetic monopoles exist; magnetic field lines form closed loops.

Faraday's Law of Induction

\[ \oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt} = -\frac{d}{dt}\int \vec{B} \cdot d\vec{A} \]

Ampere-Maxwell Law

\[ \oint \vec{H} \cdot d\vec{l} = I + \frac{d\Phi_D}{dt} \]

Magnetic Field of Common Geometries

Infinite Straight Wire

\[ \begin{aligned} B &= \frac{\mu_0 I}{2\pi r} \\ H &= \frac{I}{2\pi r} \end{aligned} \]

Solenoid (Long)

\[ \begin{aligned} B &= \mu_0 \mu_r n I = \mu_0 \mu_r \frac{NI}{l} \\ H &= \frac{NI}{l} = nI \end{aligned} \]

Toroid

\[ \begin{aligned} B &= \frac{\mu_0 \mu_r NI}{2\pi r} \\ H &= \frac{NI}{2\pi r} \end{aligned} \]

Circular Loop at Center

\[ B = \frac{\mu_0 I}{2R} \]

Helmholtz Coils

\[ B = \frac{8\mu_0 NI}{5\sqrt{5}R} = 0.716\frac{\mu_0 NI}{R} \]
Two identical coils separated by distance equal to their radius, producing uniform field in the central region.

Magnetic Coupling and Mutual Inductance

Mutual Inductance

\[ \begin{aligned} M &= k\sqrt{L_1 L_2} \\ M &= \frac{N_1 \phi_{12}}{I_2} = \frac{N_2 \phi_{21}}{I_1} \\ e_1 &= M\frac{dI_2}{dt}, \quad e_2 = M\frac{dI_1}{dt} \end{aligned} \]

Coupling Coefficient

\[ k = \frac{M}{\sqrt{L_1 L_2}}, \quad 0 \leq k \leq 1 \]
Coupling Types:

Dot Convention

Current entering the dotted terminal of one coil produces positive flux linkage in the other coil at its dotted terminal.

Series-Aiding and Series-Opposing

\[ \begin{aligned} L_{series-aiding} &= L_1 + L_2 + 2M \\ L_{series-opposing} &= L_1 + L_2 - 2M \\ L_{parallel} &= \frac{L_1L_2 - M^2}{L_1 + L_2 - 2M} \end{aligned} \]

Magnetic Saturation and Nonlinearity

Saturation Characteristics

Typical Saturation Flux Densities

Effects of Saturation

Temperature Effects on Magnetic Properties

Curie Temperature

Temperature at which ferromagnetic materials lose their ferromagnetic properties and become paramagnetic.

Curie Temperatures of Common Materials

Temperature Coefficient

\[ \mu_r(T) = \mu_r(T_0)[1 + \alpha_T(T - T_0)] \]
where \(\alpha_T\) is temperature coefficient of permeability (typically negative for ferromagnetic materials).

Magnetic Shielding

Shielding Factor

\[ S = \frac{B_{without\,shield}}{B_{with\,shield}} = 1 + \frac{\mu_r t}{R} \]
where \(t\) is shield thickness, \(R\) is shield radius, \(\mu_r\) is relative permeability.

Shielding Materials

Magnetic Measurement Techniques

Hall Effect Sensor

\[ V_H = \frac{R_H I B}{t} = K_H I B \]
where \(R_H\) is Hall coefficient, \(t\) is sensor thickness, \(K_H\) is Hall sensitivity.

Search Coil Method

\[ \phi = \frac{1}{N}\int e\,dt \]

Vibrating Sample Magnetometer (VSM)

Measures magnetic moment of materials by detecting voltage induced in pickup coils due to sample vibration.

Applications in Electrical Engineering

1. Power Transformers

2. Electric Machines (Motors/Generators)

3. Magnetic Sensors

4. Magnetic Data Storage

5. Inductors and Chokes

6. Magnetic Levitation (Maglev)

Important Constants and Conversions

\[ \begin{aligned} \mu_0 &= 4\pi \times 10^{-7}~\mathrm{H/m} = 1.257 \times 10^{-6}~\mathrm{H/m} \\ 1~\mathrm{T} &= 1~\mathrm{Wb/m^2} = 10^4~\text{gauss} = 10^4~\text{G} \\ 1~\mathrm{Wb} &= 10^8~\text{maxwell} = 10^8~\text{lines} \\ 1~\mathrm{AT/m} &= 4\pi \times 10^{-3}~\text{Oe (oersted)} \\ 1~\mathrm{H} &= 1~\mathrm{Wb/A} = 1~\mathrm{V \cdot s/A} \end{aligned} \]

Problem-Solving Strategy

Step-by-Step Approach for Magnetic Circuit Analysis

  1. Identify the circuit: Draw equivalent magnetic circuit
  2. Define unknowns: Flux, MMF, field intensity, etc.
  3. Calculate reluctances: For each section including air gaps
  4. Apply Hopkinson's Law: \(\mathcal{F} = \phi\mathcal{R}\)
  5. Use KCL for flux: Sum of fluxes at junction = 0
  6. Use KVL for MMF: Sum of MMF drops = Total MMF
  7. Check B-H curve: Verify operation in linear region
  8. Account for fringing: Especially for air gaps
  9. Calculate energy/force: If required
  10. Verify reasonableness: Check against typical values

Quick Reference Summary

Most Important Equations

\[ \begin{aligned} &\text{MMF:} & \mathcal{F} &= NI \\ &\text{Field Intensity:} & H &= \frac{NI}{l} \\ &\text{Flux Density:} & B &= \mu_0\mu_r H = \frac{\phi}{A} \\ &\text{Reluctance:} & \mathcal{R} &= \frac{l}{\mu A} \\ &\text{Hopkinson's Law:} & \mathcal{F} &= \phi\mathcal{R} \\ &\text{Inductance:} & L &= \frac{\mu N^2 A}{l} = \frac{N^2}{\mathcal{R}} \\ &\text{Energy:} & W_m &= \frac{1}{2}LI^2 = \frac{1}{2}\mathcal{R}\phi^2 \\ &\text{Force:} & F &= \frac{B^2A}{2\mu_0} \\ &\text{Induced EMF:} & e &= -N\frac{d\phi}{dt} \end{aligned} \]