Fourier Series

Fourier Series Formula

The Fourier series represents a periodic function \(f(x)\) as an infinite sum of sines and cosines or as an infinite sum of complex exponentials. It can be expressed in both trigonometric and exponential forms:

\[f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[ a_n \cos\left(\frac{2\pi n}{T}x\right) + b_n \sin\left(\frac{2\pi n}{T}x\right) \right]\]
Trigonometric Form:
\[\begin{aligned} a_0 &= \frac{1}{T} \int_{0}^{T} f(x) \, dx \\ a_n &= \frac{2}{T} \int_{0}^{T} f(x) \cos\left(\frac{2\pi n}{T}x\right) \, dx \\ b_n &= \frac{2}{T} \int_{0}^{T} f(x) \sin\left(\frac{2\pi n}{T}x\right) \, dx \\ T &= \text{Period of the function } f(x) \end{aligned}\]
Where:
\[f(x) = \sum_{n=-\infty}^{\infty} c_n e^{i\frac{2\pi n}{T}x}\]
Exponential Form:
\[c_n = \frac{1}{T} \int_{0}^{T} f(x) e^{-i\frac{2\pi n}{T}x} \, dx\]
Where:

Properties of Fourier Series

The Fourier series has several properties:

These properties make the Fourier series a powerful tool in signal processing, mathematics, and engineering.