Introduction to Fourier Series
The Fourier series is a powerful mathematical tool that decomposes periodic functions into an infinite sum of sine and cosine functions (or complex exponentials). Named after French mathematician Jean-Baptiste Joseph Fourier (1768-1830), this technique has revolutionized signal processing, physics, and engineering.
Key Concept
Any periodic function that satisfies certain conditions (Dirichlet conditions) can be represented as a sum of simple sinusoidal waves of different frequencies, amplitudes, and phases.
Fourier Series Formulas
General Trigonometric Form
For a periodic function \(f(x)\) with period \(T\):
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[ a_n \cos\left(\frac{2\pi n}{T}x\right) + b_n \sin\left(\frac{2\pi n}{T}x\right) \right]$$Fourier Coefficients:
$$\begin{aligned} a_0 &= \frac{2}{T} \int_{0}^{T} f(x) \, dx \\[10pt] a_n &= \frac{2}{T} \int_{0}^{T} f(x) \cos\left(\frac{2\pi n}{T}x\right) \, dx \\[10pt] b_n &= \frac{2}{T} \int_{0}^{T} f(x) \sin\left(\frac{2\pi n}{T}x\right) \, dx \end{aligned}$$Alternative Form (Angular Frequency)
Using angular frequency \(\omega_0 = \frac{2\pi}{T}\):
$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[ a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right]$$ $$\begin{aligned} a_0 &= \frac{2}{T} \int_{-T/2}^{T/2} f(t) \, dt \\[10pt] a_n &= \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(n\omega_0 t) \, dt \\[10pt] b_n &= \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(n\omega_0 t) \, dt \end{aligned}$$Different Forms of Fourier Series
1. Amplitude-Phase Form
Where:
$$A_n = \sqrt{a_n^2 + b_n^2}, \quad \phi_n = \arctan\left(\frac{b_n}{a_n}\right)$$2. Complex Exponential Form
Complex Coefficients:
$$c_n = \frac{1}{T} \int_{0}^{T} f(x) e^{-i\frac{2\pi n}{T}x} \, dx$$Relationship with Trigonometric Coefficients:
$$c_0 = \frac{a_0}{2}, \quad c_n = \frac{a_n - ib_n}{2}, \quad c_{-n} = \frac{a_n + ib_n}{2} = c_n^*$$3. Period 2π Form
For functions with period \(2\pi\):
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(nx) + b_n \sin(nx)]$$ $$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) \, dx, \quad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) \, dx$$Properties of Fourier Series
1. Linearity
If \(f(x)\) and \(g(x)\) have Fourier series, then:
$$\mathcal{F}[af(x) + bg(x)] = a\mathcal{F}[f(x)] + b\mathcal{F}[g(x)]$$2. Parseval's Theorem
Energy conservation in frequency domain:
$$\frac{1}{T} \int_{0}^{T} |f(x)|^2 \, dx = \frac{|a_0|^2}{4} + \frac{1}{2}\sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$ $$= \sum_{n=-\infty}^{\infty} |c_n|^2$$3. Time Shifting
Shifting in time domain:
$$f(x - x_0) \leftrightarrow c_n e^{-i\frac{2\pi n}{T}x_0}$$4. Differentiation
If \(f(x)\) is continuous and differentiable:
$$f'(x) \leftrightarrow i\frac{2\pi n}{T}c_n$$5. Integration
Integration of Fourier series:
$$\int f(x) dx \leftrightarrow \frac{T}{i2\pi n}c_n \text{ (for } n \neq 0\text{)}$$6. Orthogonality
Sine and cosine functions are orthogonal:
$$\int_{0}^{T} \cos(n\omega_0 t)\cos(m\omega_0 t) dt = \begin{cases} 0 & n \neq m \\ T/2 & n = m \end{cases}$$Convergence Conditions
Dirichlet Conditions
A periodic function \(f(x)\) can be represented by a convergent Fourier series if it satisfies the Dirichlet conditions:
- Condition 1: \(f(x)\) must be periodic with period \(T\)
- Condition 2: \(f(x)\) must have a finite number of discontinuities in any period
- Condition 3: \(f(x)\) must have a finite number of maxima and minima in any period
- Condition 4: \(f(x)\) must be absolutely integrable over one period: $$\int_{0}^{T} |f(x)| \, dx < \infty$$
Convergence at Discontinuities
Gibbs Phenomenon
At points of discontinuity, the Fourier series converges to the average of the left and right limits:
$$\lim_{N \to \infty} S_N(x_0) = \frac{f(x_0^-) + f(x_0^+)}{2}$$The Gibbs phenomenon causes an overshoot of approximately 9% of the jump magnitude near discontinuities, which doesn't disappear as more terms are added.
Symmetry Properties
| Symmetry Type | Condition | Fourier Series Form |
|---|---|---|
| Even Function | \(f(-x) = f(x)\) | Only cosine terms: \(b_n = 0\) \(a_n = \frac{4}{T}\int_0^{T/2} f(x)\cos\left(\frac{2\pi nx}{T}\right)dx\) |
| Odd Function | \(f(-x) = -f(x)\) | Only sine terms: \(a_n = 0\), \(a_0 = 0\) \(b_n = \frac{4}{T}\int_0^{T/2} f(x)\sin\left(\frac{2\pi nx}{T}\right)dx\) |
| Half-Wave Symmetry | \(f(x + T/2) = -f(x)\) | Only odd harmonics: \(a_n = b_n = 0\) for even \(n\) |
| Quarter-Wave Symmetry | Even + Half-wave | Only odd cosine terms |
Applications of Fourier Series
Signal Processing
Analysis of periodic signals, filtering, spectral analysis, audio compression (MP3), and image compression (JPEG).
Electrical Engineering
AC circuit analysis, power system harmonics, communication systems, and antenna design.
Physics
Heat transfer, wave propagation, quantum mechanics, vibration analysis, and acoustics.
Mathematics
Solving partial differential equations, boundary value problems, and studying function spaces.
Control Systems
System response analysis, frequency domain design, and stability analysis.
Data Compression
Basis for many compression algorithms including DCT (Discrete Cosine Transform) used in multimedia.
Common Fourier Series Examples
1. Square Wave
Function definition (period \(2\pi\)):
$$f(x) = \begin{cases} 1 & 0 < x < \pi \\ -1 & \pi < x < 2\pi \end{cases}$$Fourier Series:
$$f(x) = \frac{4}{\pi}\sum_{n=1,3,5,...}^{\infty} \frac{1}{n}\sin(nx) = \frac{4}{\pi}\left[\sin(x) + \frac{1}{3}\sin(3x) + \frac{1}{5}\sin(5x) + \cdots\right]$$2. Sawtooth Wave
Function: \(f(x) = x\) for \(-\pi < x < \pi\)
Fourier Series:
$$f(x) = 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}\sin(nx) = 2\left[\sin(x) - \frac{1}{2}\sin(2x) + \frac{1}{3}\sin(3x) - \cdots\right]$$3. Triangular Wave
Function: \(f(x) = |x|\) for \(-\pi < x < \pi\)
Fourier Series:
$$f(x) = \frac{\pi}{2} - \frac{4}{\pi}\sum_{n=1,3,5,...}^{\infty} \frac{1}{n^2}\cos(nx)$$4. Full-Wave Rectified Sine
Function: \(f(x) = |\sin(x)|\)
Fourier Series:
$$f(x) = \frac{2}{\pi} - \frac{4}{\pi}\sum_{n=1}^{\infty} \frac{1}{4n^2-1}\cos(2nx)$$Important Notes
- The Fourier series provides a frequency domain representation of periodic signals
- For non-periodic functions, use the Fourier Transform instead
- The fundamental frequency is \(f_0 = 1/T\), and all other components are integer multiples (harmonics)
- More terms in the series provide better approximation to the original function
- Computational implementation uses the Discrete Fourier Transform (DFT) and its efficient algorithm, the Fast Fourier Transform (FFT)