⚡ Electrical Circuits

Comprehensive Quick Revision Guide for EEE Students

1Basic Concepts & Definitions

Fundamental Quantities

Charge (\(Q\)): \( Q = \int i \, dt \) (Coulombs, C)
Current (\(i\)): \( i = \frac{dQ}{dt} \) (Amperes, A)
Voltage (\(V\)): \( V = \frac{dW}{dQ} \) (Volts, V)
Power (\(P\)): \( P = V \times i = i^2R = \frac{V^2}{R} \) (Watts, W)
Energy (\(W\)): \( W = \int P \, dt = V \times Q \) (Joules, J)
Active vs Passive Sign Convention:
• Active: Current flows from - to + (supplying power)
• Passive: Current flows from + to - (absorbing power)

Circuit Elements

Element V-I Relationship Power
Resistor (\(R\)) \( V = iR \) \( P = i^2R = \frac{V^2}{R} \)
Inductor (\(L\)) \( V = L\frac{di}{dt} \) \( W = \frac{1}{2}Li^2 \)
Capacitor (\(C\)) \( i = C\frac{dV}{dt} \) \( W = \frac{1}{2}CV^2 \)

2Fundamental Circuit Laws

Ohm's Law

\( V = I \times R \)

The voltage across a resistor is directly proportional to the current through it.

Kirchhoff's Current Law (KCL)

\( \sum i_{\text{entering}} = \sum i_{\text{leaving}} \) (at any node)
\( \sum i = 0 \) (algebraic sum at a node)

The sum of currents entering a node equals the sum leaving.

Kirchhoff's Voltage Law (KVL)

\( \sum V = 0 \) (around any closed loop)

The algebraic sum of voltages around any closed loop is zero.

3Series & Parallel Combinations

Series Connection

\( R_{\text{eq}} = R_1 + R_2 + R_3 + \dots \)
\( \frac{1}{C_{\text{eq}}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots \)
\( L_{\text{eq}} = L_1 + L_2 + L_3 + \dots \)
• Same current through all elements
• Voltages divide proportionally

Parallel Connection

\( \frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots \)
\( C_{\text{eq}} = C_1 + C_2 + C_3 + \dots \)
\( \frac{1}{L_{\text{eq}}} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \dots \)
• Same voltage across all elements
• Currents divide proportionally

Voltage & Current Dividers

Voltage Divider: \( V_x = V_{\text{total}} \times \frac{R_x}{R_{\text{total}}} \)
Current Divider: \( I_x = I_{\text{total}} \times \frac{R_{\text{other}}}{R_{\text{total}}} \)

4Network Analysis Theorems

Nodal Analysis

Steps:
1. Select a reference node (ground)
2. Assign voltages to other nodes
3. Apply KCL at each node
4. Solve simultaneous equations
\( \sum \frac{V_{\text{node}} - V_{\text{adjacent}}}{R} = 0 \)

Mesh Analysis

Steps:
1. Identify mesh currents
2. Apply KVL to each mesh
3. Express voltages in terms of mesh currents
4. Solve simultaneous equations
\( \sum V_{\text{drops}} - \sum V_{\text{rises}} = 0 \)

Superposition Theorem

In a linear circuit with multiple sources, the response is the sum of responses due to each source acting alone.

📌 Short-circuit voltage sources, open-circuit current sources when deactivating.

Thévenin's Theorem

\( V_{\text{th}} = \) Open circuit voltage at terminals
\( R_{\text{th}} = \frac{V_{\text{oc}}}{I_{\text{sc}}} = R_{\text{eq}} \) (with sources deactivated)
Any linear two-terminal network can be replaced by \( V_{\text{th}} \) in series with \( R_{\text{th}} \).

Norton's Theorem

\( I_N = \) Short circuit current at terminals
\( R_N = R_{\text{th}} = \frac{V_{\text{oc}}}{I_{\text{sc}}} \)
Any linear two-terminal network can be replaced by \( I_N \) in parallel with \( R_N \).
Conversion: \( V_{\text{th}} = I_N \times R_N \)

Maximum Power Transfer

\( R_L = R_{\text{th}} \) (for maximum power transfer)
\( P_{\text{max}} = \frac{V_{\text{th}}^2}{4R_{\text{th}}} \)

5AC Circuit Analysis

Sinusoidal Sources

\( v(t) = V_m \sin(\omega t + \phi) = V_m \cos(\omega t + \phi - 90^\circ) \)
\( \omega = 2\pi f \) (rad/s), \( T = \frac{1}{f} = \frac{2\pi}{\omega} \)
\( V_{\text{rms}} = \frac{V_m}{\sqrt{2}} \), \( I_{\text{rms}} = \frac{I_m}{\sqrt{2}} \)
Average Power: \( P_{\text{avg}} = V_{\text{rms}} I_{\text{rms}} \cos(\phi) \)

Phasors

Phasor representation: Time-domain to frequency-domain
\( V_m \cos(\omega t + \phi) \longleftrightarrow V = V_m\angle\phi = V_m e^{j\phi} \)
Rectangular: \( V = a + jb \), Polar: \( V = |V|\angle\phi \)
\( |V| = \sqrt{a^2 + b^2} \), \( \phi = \tan^{-1}\left(\frac{b}{a}\right) \)

Impedance & Admittance

Element Impedance (\(Z\)) Admittance (\(Y\))
Resistor \( Z = R \) \( Y = \frac{1}{R} \)
Inductor \( Z = j\omega L = jX_L \) \( Y = \frac{1}{j\omega L} = -\frac{j}{\omega L} \)
Capacitor \( Z = \frac{1}{j\omega C} = -jX_C \) \( Y = j\omega C \)
\( Z = R + jX \) (\( R \): resistance, \( X \): reactance)
\( |Z| = \sqrt{R^2 + X^2} \), \( \phi = \tan^{-1}\left(\frac{X}{R}\right) \)
\( Y = \frac{1}{Z} = G + jB \) (\( G \): conductance, \( B \): susceptance)

Series RLC Circuit

\( Z = R + j(X_L - X_C) = R + j(\omega L - \frac{1}{\omega C}) \)
Resonant frequency: \( \omega_0 = \frac{1}{\sqrt{LC}} \)
Quality factor: \( Q = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 R C} \)
Bandwidth: \( BW = \frac{\omega_0}{Q} = \frac{R}{L} \)

Parallel RLC Circuit

\( Y = G + j(B_C - B_L) = \frac{1}{R} + j(\omega C - \frac{1}{\omega L}) \)
Resonant frequency: \( \omega_0 = \frac{1}{\sqrt{LC}} \)
Quality factor: \( Q = \omega_0 R C = \frac{R}{\omega_0 L} \)

6AC Power Analysis

Power Components

Instantaneous Power: \( p(t) = v(t) \times i(t) \)
Average/Real Power: \( P = V_{\text{rms}} I_{\text{rms}} \cos(\phi) \) (Watts, W)
Reactive Power: \( Q = V_{\text{rms}} I_{\text{rms}} \sin(\phi) \) (VAR)
Apparent Power: \( S = V_{\text{rms}} I_{\text{rms}} = \sqrt{P^2 + Q^2} \) (VA)
Complex Power: \( S = P + jQ = V \times I^* \)

Power Factor

\( \text{pf} = \cos(\phi) = \frac{P}{S} = \frac{R}{|Z|} \)
• Leading pf: Capacitive load (current leads voltage)
• Lagging pf: Inductive load (current lags voltage)
• Unity pf: Resistive load (\( \phi = 0 \))

Power Factor Correction

\( Q_C = P(\tan \phi_1 - \tan \phi_2) \)
\( C = \frac{Q_C}{\omega V^2} \)
📌 Capacitors in parallel improve lagging power factor

7Three-Phase Systems

Balanced Three-Phase

Phase sequence: abc (positive) or acb (negative)
Phase difference: 120° between phases

Y (Star) Connection

\( V_L = \sqrt{3} V_{\text{ph}} \)
\( I_L = I_{\text{ph}} \)
\( Z_Y = \frac{V_{\text{ph}}}{I_{\text{ph}}} \)

Δ (Delta) Connection

\( V_L = V_{\text{ph}} \)
\( I_L = \sqrt{3} I_{\text{ph}} \)
\( Z_\Delta = \frac{V_{\text{ph}}}{I_{\text{ph}}} \)

Three-Phase Power

\( P = 3V_{\text{ph}} I_{\text{ph}} \cos(\phi) = \sqrt{3} V_L I_L \cos(\phi) \)
\( Q = 3V_{\text{ph}} I_{\text{ph}} \sin(\phi) = \sqrt{3} V_L I_L \sin(\phi) \)
\( S = 3V_{\text{ph}} I_{\text{ph}} = \sqrt{3} V_L I_L \)

Y-Δ Conversion

\( Z_Y = \frac{Z_\Delta}{3} \)
\( Z_\Delta = 3Z_Y \)

8Transient Response

First-Order RC Circuit

Time constant: \( \tau = RC \)
\( v(t) = V_f + (V_i - V_f)e^{-t/\tau} \)
Natural response: \( v(t) = V_0 e^{-t/RC} \)
• 63.2% of final value at \( t = \tau \)
• 99.3% of final value at \( t = 5\tau \)

First-Order RL Circuit

Time constant: \( \tau = \frac{L}{R} \)
\( i(t) = I_f + (I_i - I_f)e^{-t/\tau} \)
Natural response: \( i(t) = I_0 e^{-Rt/L} \)

Second-Order RLC Circuit

Characteristic equation: \( s^2 + \frac{R}{L}s + \frac{1}{LC} = 0 \)
Natural frequency: \( \omega_0 = \frac{1}{\sqrt{LC}} \)
Damping ratio: \( \zeta = \frac{R}{2\sqrt{L/C}} = \frac{R}{2\omega_0 L} \)
Response types:
• Overdamped: \( \zeta > 1 \)
• Critically damped: \( \zeta = 1 \)
• Underdamped: \( \zeta < 1 \)
Damped frequency: \( \omega_d = \omega_0 \sqrt{1 - \zeta^2} \)

9Two-Port Networks

Z-Parameters (Impedance)

\( V_1 = Z_{11}I_1 + Z_{12}I_2 \)
\( V_2 = Z_{21}I_1 + Z_{22}I_2 \)

Y-Parameters (Admittance)

\( I_1 = Y_{11}V_1 + Y_{12}V_2 \)
\( I_2 = Y_{21}V_1 + Y_{22}V_2 \)

h-Parameters (Hybrid)

\( V_1 = h_{11}I_1 + h_{12}V_2 \)
\( I_2 = h_{21}I_1 + h_{22}V_2 \)
📌 Widely used in transistor analysis

ABCD Parameters (Transmission)

\( V_1 = AV_2 + BI_2 \)
\( I_1 = CV_2 + DI_2 \)
📌 Useful for cascaded networks

10Frequency Response & Filters

Transfer Function

\( H(j\omega) = \frac{V_{\text{out}}}{V_{\text{in}}} = |H(j\omega)| \angle \phi(\omega) \)
Magnitude: \( |H(j\omega)| = \frac{|V_{\text{out}}|}{|V_{\text{in}}|} \)
Phase: \( \phi(\omega) = \angle V_{\text{out}} - \angle V_{\text{in}} \)

Bode Plots

Magnitude (dB): \( 20 \log_{10}|H(j\omega)| \)
Phase: \( \phi(\omega) \) in degrees or radians
Asymptotic approximations:
• Zero: +20 dB/decade slope
• Pole: -20 dB/decade slope
• Corner frequency: \( \omega = \frac{1}{\tau} \)

Filter Types

Filter Cutoff Frequency Characteristic
Low-Pass \( \omega_c = \frac{1}{RC} \) or \( \frac{R}{L} \) Passes low frequencies
High-Pass \( \omega_c = \frac{1}{RC} \) or \( \frac{R}{L} \) Passes high frequencies
Band-Pass \( \omega_0 = \frac{1}{\sqrt{LC}} \) Passes band of frequencies
Band-Stop \( \omega_0 = \frac{1}{\sqrt{LC}} \) Rejects band of frequencies
Cutoff frequency: \( |H(j\omega_c)| = 0.707 |H(j\omega)|_{\text{max}} = -3 \) dB

11Magnetically Coupled Circuits

Mutual Inductance

\( v_1 = L_1 \frac{di_1}{dt} \pm M \frac{di_2}{dt} \)
\( v_2 = L_2 \frac{di_2}{dt} \pm M \frac{di_1}{dt} \)
\( M = k\sqrt{L_1 L_2} \), where \( 0 \leq k \leq 1 \) (coupling coefficient)
📌 Use dot convention: + if currents both enter or leave dots

Transformer Equations

Turns ratio: \( n = \frac{N_1}{N_2} \)
Ideal Transformer: \( \frac{V_1}{V_2} = \frac{N_1}{N_2} = \frac{I_2}{I_1} \)
Reflected impedance: \( Z_{\text{reflected}} = n^2 Z_L \)
For ideal transformer: \( k = 1 \), \( L_1 \) and \( L_2 \to \infty \)

12Laplace Transform in Circuit Analysis

Basic Transforms

Time Domain \( f(t) \) Laplace Domain \( F(s) \)
\( \delta(t) \) 1
\( u(t) \) \( \frac{1}{s} \)
\( e^{-at} \) \( \frac{1}{s+a} \)
\( \sin(\omega t) \) \( \frac{\omega}{s^2 + \omega^2} \)
\( \cos(\omega t) \) \( \frac{s}{s^2 + \omega^2} \)
\( t^n \) \( \frac{n!}{s^{n+1}} \)

Circuit Elements in s-Domain

Element Impedance \( Z(s) \) Initial Condition
Resistor \( R \) -
Inductor \( sL \) \( Li(0^-) \) voltage source
Capacitor \( \frac{1}{sC} \) \( \frac{v(0^-)}{s} \) voltage source

Important Properties

Differentiation: \( \mathcal{L}\left\{\frac{df}{dt}\right\} = sF(s) - f(0^-) \)
Integration: \( \mathcal{L}\left\{\int f(t)dt\right\} = \frac{F(s)}{s} \)
Initial Value Theorem: \( f(0^+) = \lim_{s \to \infty} sF(s) \)
Final Value Theorem: \( f(\infty) = \lim_{s \to 0} sF(s) \)

13Fourier Series Analysis

Trigonometric Form

\( f(t) = a_0 + \sum_{n=1}^{\infty} \left[ a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right] \)
\( a_0 = \frac{1}{T} \int_{0}^{T} f(t)dt \) (DC component)
\( a_n = \frac{2}{T} \int_{0}^{T} f(t) \cos(n\omega_0 t)dt \)
\( b_n = \frac{2}{T} \int_{0}^{T} f(t) \sin(n\omega_0 t)dt \)
\( \omega_0 = \frac{2\pi}{T} \) (fundamental frequency)

Exponential Form

\( f(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t} \)
\( c_n = \frac{1}{T} \int_{0}^{T} f(t) e^{-jn\omega_0 t}dt \)

Symmetry Properties

Even function: \( f(t) = f(-t) \to b_n = 0 \)
Odd function: \( f(t) = -f(-t) \to a_n = 0, a_0 = 0 \)
Half-wave symmetry: \( f(t) = -f(t + \frac{T}{2}) \to \) even harmonics = 0

14Quick Reference Formulas

Star-Delta Transformation

\( R_1 = \frac{R_a R_b + R_b R_c + R_c R_a}{R_a} \)
\( R_a = \frac{R_1 R_2}{R_1 + R_2 + R_3} \)

Parallel Resistor Shortcuts

Two resistors: \( R_{\text{eq}} = \frac{R_1 R_2}{R_1 + R_2} \)
\( n \) equal resistors: \( R_{\text{eq}} = \frac{R}{n} \)

Complex Numbers

\( e^{j\theta} = \cos(\theta) + j \sin(\theta) \) (Euler's formula)
\( (a + jb)(c + jd) = (ac - bd) + j(ad + bc) \)
\( \frac{a + jb}{c + jd} = \frac{(ac + bd) + j(bc - ad)}{c^2 + d^2} \)

Capacitor & Inductor Energy

\( W_C = \frac{1}{2} C V^2 = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} Q V \)
\( W_L = \frac{1}{2} L i^2 = \frac{1}{2} \frac{\Phi^2}{L} = \frac{1}{2} \Phi i \)

RMS Values

\( V_{\text{rms}} = \sqrt{\frac{1}{T} \int_{0}^{T} v^2(t)dt} \)
• Sinusoidal: \( V_{\text{rms}} = \frac{V_m}{\sqrt{2}} = 0.707 V_m \)
• Square wave: \( V_{\text{rms}} = V_m \)
• Triangle: \( V_{\text{rms}} = \frac{V_m}{\sqrt{3}} \)

15Problem-Solving Strategy

General Approach

  1. Identify: Circuit type, known/unknown quantities
  2. Choose method: KVL/KCL, nodal, mesh, or theorem
  3. Simplify: Combine elements, use transformations
  4. Apply: Relevant equations and laws
  5. Solve: Algebraically or using matrices
  6. Verify: Check using KVL/KCL or power conservation

Common Pitfalls to Avoid

⚠️ Sign conventions for voltage and current
⚠️ Forgetting initial conditions in transients
⚠️ Mixing time and frequency domains
⚠️ Incorrect phasor conversions
⚠️ Wrong dot convention in coupled circuits
⚠️ Confusing line and phase values in 3-phase

When to Use Which Method

Nodal Analysis: Many nodes, voltage sources
Mesh Analysis: Many meshes, current sources
Thévenin/Norton: Single load, variable load
Superposition: Multiple independent sources
Source transformation: Simplify series-parallel combinations

📚 Study Tips

Practice numerical problems regularly • Master sign conventions early •
Draw neat circuit diagrams • Verify answers using alternative methods •
Understand physical meaning behind formulas

Good luck with your revision! ⚡