Complex Number Formula Handbook
A Comprehensive Reference for Students and Engineers
📚 Quick Navigation
Sections: Basic Operations | Conjugate | Modulus & Argument | Representations | Powers & Roots | Exponential Form | De Moivre's Theorem | Logarithms | Inequalities | Geometric Interpretations
1 Basic Definitions
A complex number is a number of the form \(z = a + ib\), where \(a, b \in \mathbb{R}\) and \(i = \sqrt{-1}\) is the imaginary unit.
- Real part: \(\text{Re}(z) = a\)
- Imaginary part: \(\text{Im}(z) = b\)
- Imaginary unit: \(i^2 = -1\), \(i^3 = -i\), \(i^4 = 1\)
- Purely real: \(z\) is real if \(b = 0\)
- Purely imaginary: \(z\) is purely imaginary if \(a = 0\) and \(b \neq 0\)
2 Algebraic Operations
Addition
\[(a+ib) + (c+id) = (a+c) + i(b+d)\]
Subtraction
\[(a+ib) - (c+id) = (a-c) + i(b-d)\]
Multiplication
\[(a+ib)(c+id) = (ac-bd) + i(ad+bc)\]
Division
\[\frac{a+ib}{c+id} = \frac{(a+ib)(c-id)}{(c+id)(c-id)} = \frac{ac + bd}{c^2 + d^2} + i\frac{bc - ad}{c^2 + d^2}\]
Note: At least one of \(c\) and \(d\) must be non-zero.
3 Complex Conjugate
The conjugate of \(z = a + ib\) is denoted \(\bar{z}\) or \(z^*\):
\[\bar{z} = a - ib\]
Properties of Conjugate
- \(\overline{\bar{z}} = z\)
- \(\overline{z_1 \pm z_2} = \bar{z_1} \pm \bar{z_2}\)
- \(\overline{z_1 \cdot z_2} = \bar{z_1} \cdot \bar{z_2}\)
- \(\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\bar{z_1}}{\bar{z_2}}\)
- \(z \cdot \bar{z} = |z|^2 = a^2 + b^2\)
- \(z + \bar{z} = 2\text{Re}(z)\)
- \(z - \bar{z} = 2i\text{Im}(z)\)
- \(\overline{z^n} = (\bar{z})^n\)
- \(z\) is real if and only if \(z = \bar{z}\)
- \(z\) is purely imaginary if and only if \(z = -\bar{z}\)
4 Modulus (Absolute Value)
The modulus of \(z = a + ib\) is:
\[|z| = \sqrt{a^2 + b^2} = \sqrt{z \cdot \bar{z}}\]
Properties of Modulus
- \(|z| \geq 0\) and \(|z| = 0\) if and only if \(z = 0\)
- \(|z| = |\bar{z}| = |-z|\)
- \(|\text{Re}(z)| \leq |z|\) and \(|\text{Im}(z)| \leq |z|\)
- \(-|z| \leq \text{Re}(z) \leq |z|\)
- \(-|z| \leq \text{Im}(z) \leq |z|\)
- \(|z^n| = |z|^n\) for \(n \in \mathbb{N}\)
- \(|z_1 \cdot z_2| = |z_1| \cdot |z_2|\)
- \(\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}\) (for \(z_2 \neq 0\))
- Triangle Inequality: \(|z_1 + z_2| \leq |z_1| + |z_2|\)
- Reverse Triangle Inequality: \(|z_1 - z_2| \geq ||z_1| - |z_2||\)
- \(|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2\text{Re}(z_1\bar{z_2})\)
- \(|z_1 - z_2|^2 = |z_1|^2 + |z_2|^2 - 2\text{Re}(z_1\bar{z_2})\)
- Parallelogram Law: \(|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2)\)
5 Argument (Phase Angle)
The argument of \(z = a + ib\) is the angle \(\theta\) that the line from origin to \(z\) makes with the positive real axis:
\[\arg(z) = \theta = \arctan\left(\frac{b}{a}\right)\]
Important: Consider the quadrant when finding argument:
- Quadrant I: \(\theta = \arctan(b/a)\)
- Quadrant II: \(\theta = \pi - \arctan(|b|/|a|)\)
- Quadrant III: \(\theta = -\pi + \arctan(|b|/|a|)\)
- Quadrant IV: \(\theta = -\arctan(|b|/|a|)\)
Principal Argument
The principal value of argument, denoted \(\text{Arg}(z)\), satisfies \(-\pi < \text{Arg}(z) \leq \pi\).
\[\arg(z) = \text{Arg}(z) + 2n\pi, \quad n \in \mathbb{Z}\]
Properties of Argument
- \(\arg(z_1 \cdot z_2) = \arg(z_1) + \arg(z_2) + 2n\pi\)
- \(\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2) + 2n\pi\)
- \(\arg(z^n) = n\arg(z) + 2k\pi\)
- \(\arg(\bar{z}) = -\arg(z)\)
- \(\arg(-z) = \arg(z) \pm \pi\)
6 Different Representations
Cartesian (Rectangular) Form
\[z = a + ib\]
where \(a = \text{Re}(z)\) and \(b = \text{Im}(z)\)
Polar Form
\[z = r(\cos\theta + i\sin\theta) = r\text{cis}(\theta) = r\angle\theta\]
where \(r = |z|\) and \(\theta = \arg(z)\)
Exponential (Euler) Form
\[z = re^{i\theta}\]
Euler's Formula: \(e^{i\theta} = \cos\theta + i\sin\theta\)
Conversion Formulas
| From |
To |
Formula |
| Cartesian |
Polar |
\(r = \sqrt{a^2 + b^2}\), \(\theta = \arctan(b/a)\) |
| Polar |
Cartesian |
\(a = r\cos\theta\), \(b = r\sin\theta\) |
7 Powers and Roots
Powers of Complex Numbers
\[z^n = r^n(\cos(n\theta) + i\sin(n\theta)) = r^ne^{in\theta}\]
De Moivre's Theorem
\[(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)\]
This holds for all \(n \in \mathbb{R}\)
nth Roots of Complex Numbers
The \(n\) distinct \(n\)th roots of \(z = re^{i\theta}\) are:
\[z_k = r^{1/n}e^{i(\theta + 2\pi k)/n} = r^{1/n}\left[\cos\left(\frac{\theta + 2\pi k}{n}\right) + i\sin\left(\frac{\theta + 2\pi k}{n}\right)\right]\]
where \(k = 0, 1, 2, \ldots, n-1\)
nth Roots of Unity
The \(n\) roots of the equation \(z^n = 1\) are:
\[\omega_k = e^{2\pi ik/n} = \cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right)\]
where \(k = 0, 1, 2, \ldots, n-1\)
Properties:
- Sum of all \(n\)th roots of unity: \(\sum_{k=0}^{n-1}\omega_k = 0\)
- Product of all \(n\)th roots of unity: \(\prod_{k=0}^{n-1}\omega_k = (-1)^{n+1}\)
8 Exponential and Logarithmic Functions
Exponential Function
\[e^z = e^{a+ib} = e^a(\cos b + i\sin b) = e^ae^{ib}\]
Important Exponential Identities
- \(e^{i\pi} = -1\) (Euler's Identity)
- \(e^{2\pi i} = 1\)
- \(e^{i\pi/2} = i\)
- \(|e^{iz}| = e^{-\text{Im}(z)}\) for any complex \(z\)
Logarithm of Complex Numbers
\[\ln(z) = \ln|z| + i\arg(z) = \ln r + i(\theta + 2n\pi)\]
The principal value is obtained when \(n = 0\):
\[\text{Log}(z) = \ln|z| + i\text{Arg}(z)\]
9 Trigonometric and Hyperbolic Functions
Trigonometric Functions
\[\cos z = \frac{e^{iz} + e^{-iz}}{2}\]
\[\sin z = \frac{e^{iz} - e^{-iz}}{2i}\]
\[\tan z = \frac{\sin z}{\cos z}\]
Hyperbolic Functions
\[\cosh z = \frac{e^z + e^{-z}}{2}\]
\[\sinh z = \frac{e^z - e^{-z}}{2}\]
\[\tanh z = \frac{\sinh z}{\cosh z}\]
Relationships
- \(\cos(iz) = \cosh z\)
- \(\sin(iz) = i\sinh z\)
- \(\cosh(iz) = \cos z\)
- \(\sinh(iz) = i\sin z\)
10 Geometric Interpretations
Distance Formula
The distance between two complex numbers \(z_1\) and \(z_2\) is:
\[d(z_1, z_2) = |z_1 - z_2|\]
Important Geometric Relations
- Circle: \(|z - z_0| = r\) represents a circle with center \(z_0\) and radius \(r\)
- Perpendicular bisector: \(|z - z_1| = |z - z_2|\) is the perpendicular bisector of the line segment joining \(z_1\) and \(z_2\)
- Ellipse: \(|z - z_1| + |z - z_2| = k\) (where \(k > |z_1 - z_2|\))
- Hyperbola: \(||z - z_1| - |z - z_2|| = k\) (where \(k < |z_1 - z_2|\))
- Straight line: \(z = z_1 + t(z_2 - z_1)\), \(t \in \mathbb{R}\)
11 Important Inequalities
- Triangle Inequality: \(|z_1 + z_2| \leq |z_1| + |z_2|\)
- Generalized Triangle Inequality: \(|z_1 + z_2 + \cdots + z_n| \leq |z_1| + |z_2| + \cdots + |z_n|\)
- Reverse Triangle Inequality: \(||z_1| - |z_2|| \leq |z_1 - z_2|\)
- \(|z_1 - z_2| \leq |z_1| + |z_2|\)
- \(|z_1 + z_2| \geq ||z_1| - |z_2||\)
12 Special Results and Theorems
Fundamental Theorem of Algebra
Every non-constant polynomial of degree \(n\) with complex coefficients has exactly \(n\) complex roots (counting multiplicities).
Square Root of Complex Numbers
If \(z = a + ib\), then \(\sqrt{z} = \pm(x + iy)\) where:
\[x = \sqrt{\frac{|z| + a}{2}}, \quad y = \text{sgn}(b)\sqrt{\frac{|z| - a}{2}}\]
Square Root of i
\[\sqrt{i} = \pm\frac{1+i}{\sqrt{2}}\]
\[\sqrt{-i} = \pm\frac{1-i}{\sqrt{2}}\]
Rotation Formula
Multiplying a complex number \(z\) by \(e^{i\alpha}\) rotates it by angle \(\alpha\) counterclockwise:
\[z' = ze^{i\alpha}\]
13 Useful Identities
- \((1 + i)^2 = 2i\)
- \((1 - i)^2 = -2i\)
- \(i^n\) has period 4: \(i^{4k} = 1\), \(i^{4k+1} = i\), \(i^{4k+2} = -1\), \(i^{4k+3} = -i\)
- \(\frac{1}{i} = -i\)
- \(|z_1||z_2|\cdots|z_n| = |z_1 z_2 \cdots z_n|\)
- If \(|z| = 1\), then \(z\bar{z} = 1\) and \(\frac{1}{z} = \bar{z}\)
- If \(z_1z_2 + z_3z_4 = 0\) and \(z_1 + z_3 = 0\), then \(z_2 = z_4\)
Complex Number Formula Handbook | Comprehensive Reference Guide