Calculus Formula Handbook
Differentiation & Integration at Your Fingertips
1. Limits
Basic Limit Properties
\[
\begin{aligned}
\lim_{x \to a} [f(x) \pm g(x)] &= \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) \\[10pt]
\lim_{x \to a} [f(x) \cdot g(x)] &= \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) \\[10pt]
\lim_{x \to a} \frac{f(x)}{g(x)} &= \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \quad \text{if } \lim_{x \to a} g(x) \neq 0 \\[10pt]
\lim_{x \to a} [cf(x)] &= c \lim_{x \to a} f(x) \\[10pt]
\lim_{x \to a} [f(x)]^n &= \left[\lim_{x \to a} f(x)\right]^n
\end{aligned}
\]
Important Limit Formulas
\[
\begin{aligned}
\lim_{x \to 0} \frac{\sin x}{x} &= 1 \\[10pt]
\lim_{x \to 0} \frac{\tan x}{x} &= 1 \\[10pt]
\lim_{x \to 0} \frac{1 - \cos x}{x} &= 0 \\[10pt]
\lim_{x \to 0} \frac{1 - \cos x}{x^2} &= \frac{1}{2} \\[10pt]
\lim_{x \to 0} (1 + x)^{1/x} &= e \\[10pt]
\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x &= e \\[10pt]
\lim_{x \to 0} \frac{e^x - 1}{x} &= 1 \\[10pt]
\lim_{x \to 0} \frac{\ln(1 + x)}{x} &= 1 \\[10pt]
\lim_{x \to 0} \frac{a^x - 1}{x} &= \ln a
\end{aligned}
\]
L'Hôpital's Rule: If \(\lim_{x \to a} \frac{f(x)}{g(x)}\) gives \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\), then:
\[
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}
\]
2. Derivatives
Basic Derivatives
| Function |
Derivative |
| \(k\) (constant) |
\(\frac{d}{dx}(k) = 0\) |
| \(x\) |
\(\frac{d}{dx}(x) = 1\) |
| \(x^n\) |
\(\frac{d}{dx}(x^n) = nx^{n-1}\) |
| \(\sqrt{x}\) |
\(\frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}}\) |
| \(\frac{1}{x}\) |
\(\frac{d}{dx}\left(\frac{1}{x}\right) = -\frac{1}{x^2}\) |
Exponential & Logarithmic Derivatives
| Function |
Derivative |
| \(e^x\) |
\(\frac{d}{dx}(e^x) = e^x\) |
| \(e^{kx}\) |
\(\frac{d}{dx}(e^{kx}) = ke^{kx}\) |
| \(a^x\) |
\(\frac{d}{dx}(a^x) = a^x \ln a\) |
| \(\ln x\) |
\(\frac{d}{dx}(\ln x) = \frac{1}{x}\) |
| \(\ln |x|\) |
\(\frac{d}{dx}(\ln |x|) = \frac{1}{x}\) |
| \(\log_a x\) |
\(\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}\) |
Trigonometric Derivatives
| Function |
Derivative |
| \(\sin x\) |
\(\frac{d}{dx}(\sin x) = \cos x\) |
| \(\cos x\) |
\(\frac{d}{dx}(\cos x) = -\sin x\) |
| \(\tan x\) |
\(\frac{d}{dx}(\tan x) = \sec^2 x\) |
| \(\cot x\) |
\(\frac{d}{dx}(\cot x) = -\csc^2 x\) |
| \(\sec x\) |
\(\frac{d}{dx}(\sec x) = \sec x \tan x\) |
| \(\csc x\) |
\(\frac{d}{dx}(\csc x) = -\csc x \cot x\) |
Inverse Trigonometric Derivatives
| Function |
Derivative |
| \(\sin^{-1} x\) |
\(\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}}\) |
| \(\cos^{-1} x\) |
\(\frac{d}{dx}(\cos^{-1} x) = -\frac{1}{\sqrt{1 - x^2}}\) |
| \(\tan^{-1} x\) |
\(\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1 + x^2}\) |
| \(\cot^{-1} x\) |
\(\frac{d}{dx}(\cot^{-1} x) = -\frac{1}{1 + x^2}\) |
| \(\sec^{-1} x\) |
\(\frac{d}{dx}(\sec^{-1} x) = \frac{1}{|x|\sqrt{x^2 - 1}}\) |
| \(\csc^{-1} x\) |
\(\frac{d}{dx}(\csc^{-1} x) = -\frac{1}{|x|\sqrt{x^2 - 1}}\) |
Hyperbolic Derivatives
| Function |
Derivative |
| \(\sinh x\) |
\(\frac{d}{dx}(\sinh x) = \cosh x\) |
| \(\cosh x\) |
\(\frac{d}{dx}(\cosh x) = \sinh x\) |
| \(\tanh x\) |
\(\frac{d}{dx}(\tanh x) = \text{sech}^2 x\) |
| \(\text{coth} x\) |
\(\frac{d}{dx}(\text{coth} x) = -\text{csch}^2 x\) |
| \(\text{sech} x\) |
\(\frac{d}{dx}(\text{sech} x) = -\text{sech} x \tanh x\) |
| \(\text{csch} x\) |
\(\frac{d}{dx}(\text{csch} x) = -\text{csch} x \text{coth} x\) |
Inverse Hyperbolic Derivatives
| Function |
Derivative |
| \(\sinh^{-1} x\) |
\(\frac{d}{dx}(\sinh^{-1} x) = \frac{1}{\sqrt{x^2 + 1}}\) |
| \(\cosh^{-1} x\) |
\(\frac{d}{dx}(\cosh^{-1} x) = \frac{1}{\sqrt{x^2 - 1}}\) |
| \(\tanh^{-1} x\) |
\(\frac{d}{dx}(\tanh^{-1} x) = \frac{1}{1 - x^2}\) |
3. Important Derivative Rules
Sum & Difference Rule
\[
\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)
\]
Product Rule
\[
\frac{d}{dx}[f(x) \cdot g(x)] = f'(x)g(x) + f(x)g'(x)
\]
Quotient Rule
\[
\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}
\]
Chain Rule
\[
\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)
\]
Or equivalently: \(\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}\)
Power Rule (General)
\[
\frac{d}{dx}[f(x)]^n = n[f(x)]^{n-1} \cdot f'(x)
\]
Implicit Differentiation
For equations where y is not explicitly solved: differentiate both sides with respect to x, treating y as a function of x.
Logarithmic Differentiation
For \(y = f(x)\): Take \(\ln\) of both sides, then differentiate:
\[
\frac{1}{y}\frac{dy}{dx} = \frac{d}{dx}[\ln f(x)] \quad \Rightarrow \quad \frac{dy}{dx} = y \cdot \frac{d}{dx}[\ln f(x)]
\]
Higher Order Derivatives
\[
\begin{aligned}
f'(x) \text{ or } \frac{dy}{dx} &\quad \text{(First derivative)} \\[8pt]
f''(x) \text{ or } \frac{d^2y}{dx^2} &\quad \text{(Second derivative)} \\[8pt]
f^{(n)}(x) \text{ or } \frac{d^ny}{dx^n} &\quad \text{(nth derivative)}
\end{aligned}
\]
5. Integration Techniques & Properties
Basic Properties
Linearity Property:
\[
\int [af(x) + bg(x)] \, dx = a\int f(x) \, dx + b\int g(x) \, dx
\]
Constant Multiple Rule:
\[
\int k \cdot f(x) \, dx = k\int f(x) \, dx
\]
Sum and Difference Rule:
\[
\int [f(x) \pm g(x)] \, dx = \int f(x) \, dx \pm \int g(x) \, dx
\]
Integration Techniques
Substitution Method (u-substitution)
Let \(u = g(x)\), then \(du = g'(x)dx\)
\[
\int f(g(x)) \cdot g'(x) \, dx = \int f(u) \, du
\]
Integration by Parts
\[
\int u \, dv = uv - \int v \, du
\]
Choose u using LIATE rule: Logarithmic, Inverse trig, Algebraic, Trigonometric, Exponential
Partial Fractions
Decompose rational functions:
\[
\frac{P(x)}{Q(x)} = \frac{A}{x-a} + \frac{B}{x-b} + \cdots
\]
Trigonometric Substitution
- For \(\sqrt{a^2 - x^2}\): use \(x = a\sin\theta\)
- For \(\sqrt{a^2 + x^2}\): use \(x = a\tan\theta\)
- For \(\sqrt{x^2 - a^2}\): use \(x = a\sec\theta\)
Fundamental Theorem of Calculus (Part 1):
\[
\text{If } F(x) = \int_a^x f(t) \, dt, \text{ then } F'(x) = f(x)
\]
Fundamental Theorem of Calculus (Part 2):
\[
\int_a^b f(x) \, dx = F(b) - F(a)
\]
where \(F'(x) = f(x)\)
6. Definite Integrals
Properties of Definite Integrals
Zero Interval:
\[
\int_a^a f(x) \, dx = 0
\]
Reversal of Limits:
\[
\int_a^b f(x) \, dx = -\int_b^a f(x) \, dx
\]
Additivity:
\[
\int_a^b f(x) \, dx + \int_b^c f(x) \, dx = \int_a^c f(x) \, dx
\]
Constant Multiple:
\[
\int_a^b k \cdot f(x) \, dx = k\int_a^b f(x) \, dx
\]
Integral of Constant:
\[
\int_a^b c \, dx = c(b - a)
\]
Comparison Property:
\[
\text{If } f(x) \leq g(x) \text{ on } [a,b], \text{ then } \int_a^b f(x) \, dx \leq \int_a^b g(x) \, dx
\]
Even Function Property:
\[
\text{If } f(-x) = f(x), \text{ then } \int_{-a}^a f(x) \, dx = 2\int_0^a f(x) \, dx
\]
Odd Function Property:
\[
\text{If } f(-x) = -f(x), \text{ then } \int_{-a}^a f(x) \, dx = 0
\]
Absolute Value Rule:
\[
\left|\int_a^b f(x) \, dx\right| \leq \int_a^b |f(x)| \, dx
\]
Applications of Definite Integrals
Area under a curve:
\[
A = \int_a^b f(x) \, dx
\]
Area between two curves:
\[
A = \int_a^b [f(x) - g(x)] \, dx \quad \text{where } f(x) \geq g(x)
\]
Volume of Revolution (Disk Method):
\[
V = \pi\int_a^b [f(x)]^2 \, dx
\]
Volume of Revolution (Shell Method):
\[
V = 2\pi\int_a^b x \cdot f(x) \, dx
\]
Arc Length:
\[
L = \int_a^b \sqrt{1 + [f'(x)]^2} \, dx
\]
Surface Area of Revolution:
\[
S = 2\pi\int_a^b f(x)\sqrt{1 + [f'(x)]^2} \, dx
\]
7. Series & Sequences
Important Series
Geometric Series:
\[
\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}, \quad |r| < 1
\]
Harmonic Series:
\[
\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots \quad \text{(Diverges)}
\]
p-Series:
\[
\sum_{n=1}^{\infty} \frac{1}{n^p} \text{ converges if } p > 1, \text{ diverges if } p \leq 1
\]
Taylor Series
\[
f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots
\]
Maclaurin Series (Taylor series at a = 0)
Exponential Function:
\[
e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots
\]
Sine Function:
\[
\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots
\]
Cosine Function:
\[
\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots
\]
Natural Logarithm:
\[
\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots, \quad |x| < 1
\]
Binomial Series:
\[
(1+x)^n = \sum_{k=0}^{\infty} \binom{n}{k} x^k = 1 + nx + \frac{n(n-1)}{2!}x^2 + \cdots, \quad |x| < 1
\]
Convergence Tests
Ratio Test: For \(\sum a_n\), if \(\lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| = L\), then:
- Converges if \(L < 1\)
- Diverges if \(L > 1\)
- Inconclusive if \(L = 1\)
Root Test: For \(\sum a_n\), if \(\lim_{n \to \infty} \sqrt[n]{|a_n|} = L\), then:
- Converges if \(L < 1\)
- Diverges if \(L > 1\)
- Inconclusive if \(L = 1\)
Integral Test: If \(f(x)\) is positive, continuous, and decreasing, then \(\sum_{n=1}^{\infty} f(n)\) and \(\int_1^{\infty} f(x) \, dx\) either both converge or both diverge.
Comparison Test: If \(0 \leq a_n \leq b_n\):
- If \(\sum b_n\) converges, then \(\sum a_n\) converges
- If \(\sum a_n\) diverges, then \(\sum b_n\) diverges
Alternating Series Test: \(\sum (-1)^n a_n\) converges if:
- \(a_n > 0\) for all n
- \(a_{n+1} \leq a_n\) (decreasing)
- \(\lim_{n \to \infty} a_n = 0\)
Additional Important Formulas
Partial Derivatives
\[
\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h}
\]
Gradient
\[
\nabla f = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\rangle
\]
Directional Derivative
\[
D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u}
\]
Double Integral
\[
\iint_R f(x,y) \, dA = \int_a^b \int_c^d f(x,y) \, dy \, dx
\]
Triple Integral
\[
\iiint_V f(x,y,z) \, dV = \int_a^b \int_c^d \int_e^f f(x,y,z) \, dz \, dy \, dx
\]
Green's Theorem
\[
\oint_C (P \, dx + Q \, dy) = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA
\]
Stokes' Theorem
\[
\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S}
\]
Divergence Theorem
\[
\iiint_V (\nabla \cdot \mathbf{F}) \, dV = \iint_S \mathbf{F} \cdot d\mathbf{S}
\]