Calculus Formula Sheet

Derivatives

Function Derivative
\(k\) (constant) \(\frac{d}{dx}(k) = 0\)
\(x\) \(\frac{d}{dx}(x) = 1\)
\(x^2\) \(\frac{d}{dx}(x^2) = 2x\)
\(x^3\) \(\frac{d}{dx}(x^3) = 3x^2\)
\(x^n\) (for any constant \(n\)) \(\frac{d}{dx}(x^n) = nx^{n-1}\)
\(e^x\) \(\frac{d}{dx}(e^x) = e^x\)
\(e^{kx}\) \(\frac{d}{dx}(e^{kx}) = ke^{kx}\)
\(\ln x = \log_e x\) \(\frac{d}{dx}(\ln x) = \frac{1}{x}\)
\(\sin x\) \(\frac{d}{dx}(\sin x) = \cos x\)
\(\cos x\) \(\frac{d}{dx}(\cos x) = -\sin x\)
\(\tan x\) \(\frac{d}{dx}(\tan x) = \sec^2 x\)
\(\csc x\) \(\frac{d}{dx}(\csc x) = -\csc x \cot x\)
\(\cot x\) \(\frac{d}{dx}(\cot x) = -\csc^2 x\)
\(\sec x\) \(\frac{d}{dx}(\sec x) = \sec x \tan x\)
\(\sin^{-1} x\) \(\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}}\)
\(\cos^{-1} x\) \(\frac{d}{dx}(\cos^{-1} x) = -\frac{1}{\sqrt{1 - x^2}}\)
\(\tan^{-1} x\) \(\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1 + x^2}\)
\(\sinh x\) \(\frac{d}{dx}(\sinh x) = \cosh x\)
\(\cosh x\) \(\frac{d}{dx}(\cosh x) = \sinh x\)
\(\tanh x\) \(\frac{d}{dx}(\tanh x) = \mathrm{sech}^2 x\)

Important Properties of Derivatives

  1. \[\int f(x) \, dx = F(x) + C,\]
    is the constant of integration. where \(f(x)\)\(F(x)\)First Fundamental Rule of Calculus:
  2. \[\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}.\]
    \(u = f(x)\)\(y = g(u)\)Chain Rule:

Integrals

Function Integral
\(\int u^n \, du\) \(\frac{u^{n+1}}{n+1} + C, \quad n \neq -1\)
\(\int \frac{du}{u}\) \(\ln |u| + C\)
\(\int e^u \, du\) \(e^u + C\)
\(\int au \, du\) \(\frac{a}{\ln a} \ln |u| + C\)
\(\int \sin u \, du\) \(-\cos u + C\)
\(\int \cos u \, du\) \(\sin u + C\)
\(\int \sec^2 u \, du\) \(\tan u + C\)
\(\int \csc^2 u \, du\) \(-\cot u + C\)
\(\int \sec u \tan u \, du\) \(\sec u + C\)
\(\int \csc u \cot u \, du\) \(-\csc u + C\)
\(\int \tan u \, du\) \(\ln |\sec u| + C\)
\(\int \cot u \, du\) \(\ln |\sin u| + C\)
\(\int \sec u \, du\) \(\ln |\sec u + \tan u| + C\)
\(\int \csc u \, du\) \(\ln |\csc u - \cot u| + C\)
\(\int \frac{du}{\sqrt{a^2 - u^2}}\) \(\arcsin\left(\frac{u}{a}\right) + C\)
\(\int \frac{du}{a^2 + u^2}\) \(\frac{1}{a} \arctan\left(\frac{u}{a}\right) + C\)
\(\int \frac{du}{|u|\sqrt{u^2 - a^2}}\) \(\frac{1}{a} \text{arcsec}\left(\frac{|u|}{a}\right) + C\)
\(\int \ln u \, du\) \(u\ln u - u + C\)
\(\int \sinh u \, du\) \(\cosh u + C\)
\(\int \cosh u \, du\) \(\sinh u + C\)
\(\int \tanh u \, du\) \(\ln(\cosh u) + C\)
\(\int \arcsin u \, du\) \(u\arcsin u + \sqrt{1-u^2} + C\)
\(\int \arccos u \, du\) \(u\arccos u - \sqrt{1-u^2} + C\)
\(\int \arctan u \, du\) \(u\arctan u - \frac{1}{2}\ln(1+u^2) + C\)

Properties of Integrals

  1. \[\int (af(u) + bg(u)) \, du = a\int f(u) \, du + b\int g(u) \, du\]
    Linearity Property:
  2. \[\int u \, dv = uv - \int v \, du\]
    Integration by Parts:
  3. \[\int k \cdot f(u) \, du = k\int f(u) \, du\]
    Constant Multiple Rule:
  4. \[\int (f(u) \pm g(u)) \, du = \int f(u) \, du \pm \int g(u) \, du\]
    Sum and Difference Rule:
  5. \[\int f(u) \, du = \int f(g(x)) \cdot g'(x) \, dx\]
    Change of Variable Rule:
  6. \[\int_a^a f(x) \, dx = 0\]
    Zero-Integral Rule:
  7. \[\int_a^b c \, dx = c(b - a)\]
    Integral of a Constant:
  8. \[\int_{-a}^a f(x) \, dx = 2\int_0^a f(x) \, dx\]
    Symmetry Rule:
  9. \[\left|\int_a^b f(x) \, dx\right| \leq \int_a^b |f(x)| \, dx\]
    Absolute Value Rule: