Trigonometry Formulas

A Comprehensive Reference Guide

Basic Trigonometric Ratios (Right Triangle)

SOH-CAH-TOA Mnemonic:
\[ \begin{aligned} \sin(\theta) &= \frac{\text{Opposite}}{\text{Hypotenuse}} \quad & \cos(\theta) &= \frac{\text{Adjacent}}{\text{Hypotenuse}} \quad & \tan(\theta) &= \frac{\text{Opposite}}{\text{Adjacent}} \end{aligned} \]

Reciprocal Identities

\[ \begin{aligned} \sin(\theta) &= \frac{1}{\csc(\theta)} \\[8pt] \cos(\theta) &= \frac{1}{\sec(\theta)} \\[8pt] \tan(\theta) &= \frac{1}{\cot(\theta)} \end{aligned} \]
\[ \begin{aligned} \csc(\theta) &= \frac{1}{\sin(\theta)}\\[8pt] \sec(\theta) &= \frac{1}{\cos(\theta)}\\[8pt] \cot(\theta) &= \frac{1}{\tan(\theta)} \end{aligned} \]

Quotient Identities

\[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \qquad \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} \]

Pythagorean Identities

\[ \begin{aligned} \sin^2(\theta) + \cos^2(\theta) &= 1 \\[10pt] 1 + \tan^2(\theta) &= \sec^2(\theta) \\[10pt] 1 + \cot^2(\theta) &= \csc^2(\theta) \end{aligned} \]

Trigonometric Table

Angle \(0^\circ\) \(30^\circ\) \(45^\circ\) \(60^\circ\) \(90^\circ\) \(180^\circ\) \(270^\circ\) \(360^\circ\)
Radians \(0\) \(\frac{\pi}{6}\) \(\frac{\pi}{4}\) \(\frac{\pi}{3}\) \(\frac{\pi}{2}\) \(\pi\) \(\frac{3\pi}{2}\) \(2\pi\)
sin \(0\) \(\frac{1}{2}\) \(\frac{\sqrt{2}}{2}\) \(\frac{\sqrt{3}}{2}\) \(1\) \(0\) \(-1\) \(0\)
cos \(1\) \(\frac{\sqrt{3}}{2}\) \(\frac{\sqrt{2}}{2}\) \(\frac{1}{2}\) \(0\) \(-1\) \(0\) \(1\)
tan \(0\) \(\frac{1}{\sqrt{3}}\) \(1\) \(\sqrt{3}\) \(\infty\) \(0\) \(\infty\) \(0\)
cot \(\infty\) \(\sqrt{3}\) \(1\) \(\frac{1}{\sqrt{3}}\) \(0\) \(\infty\) \(0\) \(\infty\)
sec \(1\) \(\frac{2}{\sqrt{3}}\) \(\sqrt{2}\) \(2\) \(\infty\) \(-1\) \(\infty\) \(1\)
csc \(\infty\) \(2\) \(\sqrt{2}\) \(\frac{2}{\sqrt{3}}\) \(1\) \(\infty\) \(-1\) \(\infty\)

Periodicity Identities

Note: Sine and cosine have period \(2\pi\), tangent and cotangent have period \(\pi\)
\[ \begin{aligned} \sin\left(\frac{\pi}{2} - A\right) &= \cos(A) \qquad & \cos\left(\frac{\pi}{2} - A\right) &= \sin(A)\\[10pt] \sin\left(\frac{\pi}{2} + A\right) &= \cos(A) & \cos\left(\frac{\pi}{2} + A\right) &= -\sin(A) \\[10pt] \sin\left(\frac{3\pi}{2} - A\right) &= -\cos(A) & \cos\left(\frac{3\pi}{2} - A\right) &= -\sin(A) \\[10pt] \sin\left(\frac{3\pi}{2} + A\right) &= -\cos(A) & \cos\left(\frac{3\pi}{2} + A\right) &= \sin(A) \\[10pt] \sin(\pi - A) &= \sin(A) & \cos(\pi - A) &= -\cos(A) \\[10pt] \sin(\pi + A) &= -\sin(A) & \cos(\pi + A) &= -\cos(A) \\[10pt] \sin(2\pi - A) &= -\sin(A) & \cos(2\pi - A) &= \cos(A) \\[10pt] \sin(2\pi + A) &= \sin(A) & \cos(2\pi + A) &= \cos(A) \end{aligned} \]

Co-function Identities

\[ \begin{aligned} \sin\left(\frac{\pi}{2} - \theta\right) &= \cos(\theta) \qquad & \cos\left(\frac{\pi}{2} - \theta\right) &= \sin(\theta) \\[10pt] \tan\left(\frac{\pi}{2} - \theta\right) &= \cot(\theta) & \cot\left(\frac{\pi}{2} - \theta\right) &= \tan(\theta) \\[10pt] \sec\left(\frac{\pi}{2} - \theta\right) &= \csc(\theta) & \csc\left(\frac{\pi}{2} - \theta\right) &= \sec(\theta) \end{aligned} \]

Even-Odd Identities

\[ \begin{aligned} \sin(-\theta) &= -\sin(\theta) \quad \text{(Odd)} \\[10pt] \cos(-\theta) &= \cos(\theta) \quad \text{(Even)} \\[10pt] \tan(-\theta) &= -\tan(\theta) \quad \text{(Odd)} \\[10pt] \csc(-\theta) &= -\csc(\theta) \quad \text{(Odd)} \\[10pt] \sec(-\theta) &= \sec(\theta) \quad \text{(Even)} \\[10pt] \cot(-\theta) &= -\cot(\theta) \quad \text{(Odd)} \end{aligned} \]

Sum and Difference Identities

\[ \begin{aligned} \sin(x \pm y) &= \sin(x)\cos(y) \pm \cos(x)\sin(y) \\[10pt] \cos(x \pm y) &= \cos(x)\cos(y) \mp \sin(x)\sin(y) \\[10pt] \tan(x \pm y) &= \frac{\tan(x) \pm \tan(y)}{1 \mp \tan(x)\tan(y)} \end{aligned} \]

Double Angle Identities

\[ \begin{aligned} \sin(2x) &= 2\sin(x)\cos(x) = \frac{2\tan(x)}{1+\tan^2(x)} \\[10pt] \cos(2x) &= \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x) = \frac{1-\tan^2(x)}{1+\tan^2(x)} \\[10pt] \tan(2x) &= \frac{2\tan(x)}{1-\tan^2(x)} \\[10pt] \sec(2x) &= \frac{\sec^2(x)}{2-\sec^2(x)} = \frac{1+\tan^2(x)}{1-\tan^2(x)} \\[10pt] \csc(2x) &= \frac{\sec(x)\csc(x)}{2} \end{aligned} \]

Triple Angle Identities

\[ \begin{aligned} \sin(3x) &= 3\sin(x) - 4\sin^3(x) \\[10pt] \cos(3x) &= 4\cos^3(x) - 3\cos(x) \\[10pt] \tan(3x) &= \frac{3\tan(x) - \tan^3(x)}{1 - 3\tan^2(x)} \end{aligned} \]

Half Angle Identities

\[ \begin{aligned} \sin\left(\frac{x}{2}\right) &= \pm \sqrt{\frac{1 - \cos(x)}{2}} \\[10pt] \cos\left(\frac{x}{2}\right) &= \pm \sqrt{\frac{1 + \cos(x)}{2}} \\[10pt] \tan\left(\frac{x}{2}\right) &= \pm\sqrt{\frac{1 - \cos(x)}{1 + \cos(x)}} = \frac{\sin(x)}{1 + \cos(x)} = \frac{1 - \cos(x)}{\sin(x)} \end{aligned} \]
Sign Selection: Choose ± based on the quadrant of \(\frac{x}{2}\)

Power Reducing Identities

\[ \begin{aligned} \sin^2(x) &= \frac{1 - \cos(2x)}{2} \\[10pt] \cos^2(x) &= \frac{1 + \cos(2x)}{2} \\[10pt] \tan^2(x) &= \frac{1 - \cos(2x)}{1 + \cos(2x)} \end{aligned} \]

Product Identities

\[ \begin{aligned} \sin(x)\cos(y) &= \frac{1}{2}[\sin(x+y) + \sin(x-y)] \\[10pt] \cos(x)\cos(y) &= \frac{1}{2}[\cos(x+y) + \cos(x-y)] \\[10pt] \sin(x)\sin(y) &= \frac{1}{2}[\cos(x-y) - \cos(x+y)] \end{aligned} \]

Sum to Product Identities

\[ \begin{aligned} \sin(x) + \sin(y) &= 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) \\[10pt] \sin(x) - \sin(y) &= 2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right) \\[10pt] \cos(x) + \cos(y) &= 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) \\[10pt] \cos(x) - \cos(y) &= -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right) \end{aligned} \]

Inverse Trigonometry Formulas

Domain and Range:
  • \(\sin^{-1}(x)\): Domain \([-1, 1]\), Range \([-\frac{\pi}{2}, \frac{\pi}{2}]\)
  • \(\cos^{-1}(x)\): Domain \([-1, 1]\), Range \([0, \pi]\)
  • \(\tan^{-1}(x)\): Domain \((-\infty, \infty)\), Range \((-\frac{\pi}{2}, \frac{\pi}{2})\)
\[ \begin{aligned} \sin^{-1}(-x) &= -\sin^{-1}(x) \\[10pt] \cos^{-1}(-x) &= \pi - \cos^{-1}(x) \\[10pt] \tan^{-1}(-x) &= -\tan^{-1}(x) \\[10pt] \csc^{-1}(-x) &= -\csc^{-1}(x) \\[10pt] \sec^{-1}(-x) &= \pi - \sec^{-1}(x) \\[10pt] \cot^{-1}(-x) &= \pi - \cot^{-1}(x) \end{aligned} \]

Inverse Trigonometry Complementary Relations

\[ \begin{aligned} \sin^{-1}(x) + \cos^{-1}(x) &= \frac{\pi}{2} \\[10pt] \tan^{-1}(x) + \cot^{-1}(x) &= \frac{\pi}{2} \\[10pt] \sec^{-1}(x) + \csc^{-1}(x) &= \frac{\pi}{2} \end{aligned} \]

Inverse Trigonometry Sum Formulas

\[ \begin{aligned} \sin^{-1}(x) + \sin^{-1}(y) &= \sin^{-1}\left(x\sqrt{1-y^2} + y\sqrt{1-x^2}\right) \\[10pt] \tan^{-1}(x) + \tan^{-1}(y) &= \tan^{-1}\left(\frac{x+y}{1-xy}\right) \quad (xy < 1) \\[10pt] 2\tan^{-1}(x) &= \tan^{-1}\left(\frac{2x}{1-x^2}\right) \quad (|x| < 1) \end{aligned} \]

Law of Sines and Cosines

Law of Sines: \[ \frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)} = 2R \]

where \(R\) is the circumradius of the triangle

Law of Cosines: \[ \begin{aligned} c^2 &= a^2 + b^2 - 2ab\cos(C) \\[10pt] \cos(C) &= \frac{a^2 + b^2 - c^2}{2ab} \end{aligned} \]

Area of Triangle

\[ \begin{aligned} \text{Area} &= \frac{1}{2}ab\sin(C) \\[10pt] \text{Area} &= \sqrt{s(s-a)(s-b)(s-c)} \quad \text{(Heron's Formula)} \end{aligned} \]

where \(s = \frac{a+b+c}{2}\) is the semi-perimeter

Important Notes

Master these formulas and conquer trigonometry!