Trigonometry Formulas


Reciprocal Identities


\[ \begin{aligned} \sin(\theta) &= \frac{1}{\csc(\theta)} \\ \cos(\theta) &= \frac{1}{\sec(\theta)} \\ \tan(\theta) &= \frac{1}{\cot(\theta)} \end{aligned} \]
\[ \begin{aligned} \csc(\theta) &= \frac{1}{\sin(\theta)}\\ \sec(\theta) &= \frac{1}{\cos(\theta)}\\ \cot(\theta) &= \frac{1}{\tan(\theta)} \end{aligned} \]

Trigonometric Table

Angle \(0^\circ\) \(30^\circ\) \(45^\circ\) \(60^\circ\) \(90^\circ\) \(180^\circ\) \(270^\circ\) \(360^\circ\)
Angle (in radians) \(0\) \(\frac{\pi}{6}\) \(\frac{\pi}{4}\) \(\frac{\pi}{3}\) \(\frac{\pi}{2}\) \(\pi\) \(\frac{3\pi}{2}\) \(2\pi\)
sin \(0\) \(\frac{1}{2}\) \(\frac{\sqrt{2}}{2}\) \(\frac{\sqrt{3}}{2}\) \(1\) \(0\) \(-1\) \(0\)
cos \(1\) \(\frac{\sqrt{3}}{2}\) \(\frac{\sqrt{2}}{2}\) \(\frac{1}{2}\) \(0\) \(-1\) \(0\) \(1\)
tan \(0\) \(\frac{\sqrt{3}}{3}\) \(1\) \(\sqrt{3}\) \(\infty\) \(0\) \(\infty\) \(0\)
cot \(\infty\) \(\sqrt{3}\) \(1\) \(\frac{\sqrt{3}}{3}\) \(0\) \(\infty\) \(0\) \(\infty\)
sec \(1\) \(2\) \(\sqrt{2}\) \(\frac{2}{\sqrt{3}}\) \(\infty\) \(-1\) \(\infty\) \(1\)
cosec \(\infty\) \(\frac{2}{\sqrt{3}}\) \(\sqrt{2}\) \(2\) \(1\) \(\infty\) \(-1\) \(\infty\)

Periodicity Identities (in Radians)

\[\begin{aligned} {2} \sin\left(\frac{\pi}{2} - A\right) &= \cos(A) \qquad & \cos\left(\frac{\pi}{2} - A\right) &= \sin(A)\\[10pt] \sin\left(\frac{\pi}{2} + A\right) &= \cos(A) & \cos\left(\frac{\pi}{2} + A\right) &= -\sin(A) \\[10pt] \sin\left(\frac{3\pi}{2} - A\right) &= -\cos(A) & \cos\left(\frac{3\pi}{2} - A\right) &= -\sin(A) \\[10pt] \sin\left(\frac{3\pi}{2} + A\right) &= -\cos(A) & \cos\left(\frac{3\pi}{2} + A\right) &= \sin(A) \\[10pt] \sin(\pi - A) &= \sin(A) & \cos(\pi - A) &= -\cos(A) \\[10pt] \sin(\pi + A) &= -\sin(A) & \cos(\pi + A) &= -\cos(A) \\[10pt] \sin(2\pi - A) &= -\sin(A) & \cos(2\pi - A) &= \cos(A) \\[10pt] \sin(2\pi + A) &= \sin(A) & \cos(2\pi + A) &= \cos(A) \end{aligned}\]

Sum and Difference Identities (in Radians)

\[\sin(x+y) = \sin(x)\cos(y)+\cos(x)\sin(y)\]
\[\cos(x+y) = \cos(x)\cos(y)-\sin(x)\sin(y)\]
\[\tan(x + y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}\]
\[\sin(x-y) = \sin(x)\cos(y)-\cos(x)\sin(y)\]
\[\cos(x-y) = \cos(x)\cos(y) + \sin(x)\sin(y)\]
\[\tan(x - y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}\]

Double Angle Identities (in Radians)

\[ \begin{aligned} \sin(2x) &= 2\sin(x)\cos(x) = \frac{2\tan(x)}{1+\tan^2(x)}\\ \cos(2x)& = \cos^2(x) - \sin^2(x) = \frac{1-\tan^2(x)}{1+\tan^2(x)}\\ \tan(2x) &= \frac{2\tan(x)}{1-\tan^2(x)}\\ \sec(2x) &= \frac{1}{\cos(2x)} = \frac{1+\tan^2(x)}{1-\tan^2(x)}\\ \csc(2x) &= \frac{\sec(x)\csc(x)}{2} \end{aligned} \]

Triple Angle Identities

\[\sin(3x) = 3\sin(x) - 4\sin^3(x)\]
\[\cos(3x) = 4\cos^3(x) - 3\cos(x)\]
\[\tan(3x) = \frac{3\tan(x) - \tan^3(x)}{1 - 3\tan^2(x)}\]

Half Angle Identities

\[ \begin{aligned} \sin\left(\frac{x}{2}\right) &= \pm \sqrt{\frac{1 - \cos(x)}{2}}\\ \cos\left(\frac{x}{2}\right) & = \pm \sqrt{\frac{1 + \cos(x)}{2}}\\ \tan\left(\frac{x}{2}\right) &=\sqrt{\frac{1 - \cos(x)}{1 + \cos(x)}} = \frac{1 - \cos(x)}{\sin(x)} \end{aligned} \]

Product Identities

\[\sin(x)\cos(y) = \frac{\sin(x+y) + \sin(x-y)}{2}\]

Sum to Product Identities

\[\sin(x) + \sin(y) = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)\]

Inverse Trigonometry Formulas

\[\sin^{-1}(-x) = -\sin^{-1}(x)\]
\[\cos^{-1}(-x) = \pi - \cos^{-1}(x)\]
\[\tan^{-1}(-x) = -\tan^{-1}(x)\]
\[\csc^{-1}(-x) = -\csc^{-1}(x)\]
\[\sec^{-1}(-x) = \pi - \sec^{-1}(x)\]
\[\cot^{-1}(-x) = \pi - \cot^{-1}(x)\]