Laplace Transforms

Basic Laplace Transform Formula

\[L\{f(t)\} = F(s) = \int_0^\infty e^{-st} f(t) dt\]

Properties of Laplace Transform

\[\begin{aligned} \textbf{Linearity Property:} & \quad A f_1(t) + B f_2(t) \leftrightarrow A F_1(s) + B F_2(s) \\ \textbf{Frequency Shifting Property:} & \quad e^{s_0t} f(t) \leftrightarrow F(s - s_0) \\ \textbf{Integration Property:} & \quad \int_0^t f(\lambda) d\lambda \leftrightarrow \frac{1}{s} F(s) \\ \textbf{Multiplication by Time:} & \quad t f(t) \leftrightarrow -\frac{d}{ds} F(s) \\ \textbf{Complex Shift Property:} & \quad f(t) e^{-at} \leftrightarrow F(s + a) \\ \textbf{Time Reversal Property:} & \quad f(-t) \leftrightarrow F(-s) \\ \textbf{Time Scaling Property:} & \quad f\left(\frac{t}{a}\right) \leftrightarrow a F(as) \end{aligned}\]

Laplace Transform Table

Sl No. \(\boldsymbol{f(t)}\) \(\boldsymbol{L(f(t)) = F(s)}\)
1 1 \(\frac{1}{s}\)
2 \(t^n\) at \(t = 1,2,3,\ldots\) \(\frac{n!}{s^{n+1}}\)
3 \(\sqrt{t}\) \(\frac{\sqrt{\pi}}{2s^{3/2}}\)
4 \(\sin(at)\) \(\frac{a}{s^2 + a^2}\)
5 \(t \sin(at)\) \(\frac{2as}{(s^2 + a^2)^2}\)
6 \(\sin(at+b)\) \(\frac{(s \sin(b) + a \cos(b))}{s^2 + a^2}\)
7 \(\sinh(at)\) \(\frac{a}{s^2 - a^2}\)
8 \(e(at) \sin(bt)\) \(\frac{b}{(s-a)^2 + b^2}\)
9 \(e(ct) f(t)\) \(F(s-c)\)
10 \(f'(t)\) \(sF(s) - f(0)\)
11 \(e(at)\) \(\frac{1}{s - a}\)
12 \(t^p\) at \(p > -1\) \(\frac{\Gamma(p+1)}{s^{p+1}}\)
13 \(t^{n-1/2}\) at \(n = 1,2,\ldots\) \(\frac{(1 \cdot 3 \cdot 5 \ldots (2n-1))\sqrt{\pi}}{2n s^{n+1/2}}\)
14 \(\cos(at)\) \(\frac{s}{s^2 + a^2}\)
15 \(t \cos(at)\) \(\frac{s^2 - a^2}{(s^2 + a^2)^2}\)
16 \(\cos(at+b)\) \(\frac{(s \cos(b) - a \sin(b))}{s^2 + a^2}\)
17 \(\cosh(at)\) \(\frac{a}{s^2 - a^2}\)
18 \(e(at) \cos(bt)\) \(\frac{(s-a)}{(s-a)^2 + b^2}\)
19 \(t^n f(t)\) at \(n = 1,2,3,\ldots\) \((-1)^n F^{(n)}(s)\)
20 \(f''(t)\) \(s^2F(s) - sf(0) - f'(0)\)