📐 Basic Laplace Transform Definition
Definition: The Laplace Transform of a function \(f(t)\) is defined as:
$$L\{f(t)\} = F(s) = \int_0^\infty e^{-st} f(t) \, dt$$where \(s\) is a complex number, \(s = \sigma + j\omega\)
Region of Convergence (ROC): The transform exists for values of \(s\) where the integral converges, typically \(\text{Re}(s) > a\) for some real number \(a\).
⚡ Properties of Laplace Transform
where \(u(t)\) is the unit step function
where \(f*g = \int_0^t f(\tau)g(t-\tau) \, d\tau\)
📋 Laplace Transform Table
| No. | \(f(t)\) | \(F(s) = L\{f(t)\}\) |
|---|---|---|
| 1 | \(\delta(t)\) (unit impulse) | \(1\) |
| 2 | \(u(t)\) (unit step) | \(\frac{1}{s}\) |
| 3 | \(t\) | \(\frac{1}{s^2}\) |
| 4 | \(t^n\), \(n = 1,2,3,\ldots\) | \(\frac{n!}{s^{n+1}}\) |
| 5 | \(t^p\), \(p > -1\) | \(\frac{\Gamma(p+1)}{s^{p+1}}\) |
| 6 | \(\sqrt{t}\) | \(\frac{\sqrt{\pi}}{2s^{3/2}}\) |
| 7 | \(e^{at}\) | \(\frac{1}{s - a}\) |
| 8 | \(t e^{at}\) | \(\frac{1}{(s-a)^2}\) |
| 9 | \(t^n e^{at}\) | \(\frac{n!}{(s-a)^{n+1}}\) |
| 10 | \(\sin(at)\) | \(\frac{a}{s^2 + a^2}\) |
| 11 | \(\cos(at)\) | \(\frac{s}{s^2 + a^2}\) |
| 12 | \(t \sin(at)\) | \(\frac{2as}{(s^2 + a^2)^2}\) |
| 13 | \(t \cos(at)\) | \(\frac{s^2 - a^2}{(s^2 + a^2)^2}\) |
| 14 | \(\sin(at + b)\) | \(\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}\) |
| 15 | \(\cos(at + b)\) | \(\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}\) |
| 16 | \(e^{at} \sin(bt)\) | \(\frac{b}{(s-a)^2 + b^2}\) |
| 17 | \(e^{at} \cos(bt)\) | \(\frac{s-a}{(s-a)^2 + b^2}\) |
| 18 | \(\sinh(at)\) | \(\frac{a}{s^2 - a^2}\) |
| 19 | \(\cosh(at)\) | \(\frac{s}{s^2 - a^2}\) |
| 20 | \(e^{at} \sinh(bt)\) | \(\frac{b}{(s-a)^2 - b^2}\) |
| 21 | \(e^{at} \cosh(bt)\) | \(\frac{s-a}{(s-a)^2 - b^2}\) |
🔄 Inverse Laplace Transform
Definition: The Inverse Laplace Transform is given by:
$$f(t) = L^{-1}\{F(s)\} = \frac{1}{2\pi j} \int_{\gamma - j\infty}^{\gamma + j\infty} e^{st} F(s) \, ds$$where \(\gamma\) is a real number chosen so that all singularities of \(F(s)\) lie to the left of the line \(\text{Re}(s) = \gamma\)
Practical Methods for Finding Inverse Transforms:
- Partial Fraction Decomposition
- Convolution Theorem
- Residue Theorem (Complex Analysis)
- Transform tables and linearity
🎯 Important Theorems
Initial Value Theorem:
$$\lim_{t \to 0^+} f(t) = \lim_{s \to \infty} s F(s)$$Provided the limit exists
Final Value Theorem:
$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} s F(s)$$Valid if \(sF(s)\) has no poles in the right half-plane or on the imaginary axis (except possibly at the origin)
Convolution Theorem:
$$L\{f(t) * g(t)\} = F(s) \cdot G(s)$$ $$L^{-1}\{F(s) \cdot G(s)\} = f(t) * g(t) = \int_0^t f(\tau) g(t - \tau) \, d\tau$$🔬 Applications
1. Solving Differential Equations: Convert ODEs to algebraic equations in the s-domain
2. Circuit Analysis: Analyze RLC circuits, transfer functions, and frequency response
3. Control Systems: Stability analysis, transfer functions, and system response
4. Signal Processing: Filter design, system identification, and signal analysis
5. Mechanical Systems: Vibration analysis, spring-mass-damper systems
💡 Pro Tip: When solving differential equations using Laplace transforms:
- Take the Laplace transform of both sides
- Apply initial conditions
- Solve the algebraic equation for \(F(s)\)
- Use partial fractions if necessary
- Take the inverse Laplace transform to get \(f(t)\)