Fourier Transform

Fourier Transform Formula

The Fourier Transform is a mathematical operation that transforms a function of time, \(f(x)\), into its frequency domain representation, \(F(k) = \mathcal{F}[f(x)]\). The forward and inverse Fourier Transforms are defined as follows:

\[F(k) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i k x} dx\]
Forward Fourier Transform:
\[f(x) = \int_{-\infty}^{\infty} F(k) e^{2\pi i k x} dk\]
Inverse Fourier Transform:

Fourier Transform Properties

The Fourier Transform has several important properties:

These properties are crucial in signal processing, image analysis, and various other fields.

Fourier Transform Table

The following table presents the Fourier transform for different functions:

Function
1 \(\delta(t)\) \(1\)
2 \(1\) \(2\pi\delta(\omega)\)
3 \(\delta(t - t_0)\) \(e^{-j\omega t_0}\)
4 \(e^{-j\omega_0 t}\) \(2\pi\delta(\omega - \omega_0)\)
5 \(u(t)\) \(\pi\delta(\omega) + \frac{j}{\omega}\)
6 \(\sum_{n=-\infty}^{\infty}\delta(t - nT)\) \(\omega_0\sum_{n=-\infty}^{\infty}\delta(\omega - n\omega_0)\)
7 \(\text{sgn}(t)\) \(\frac{2j}{\omega}\)
8 \(e^{j\omega_0 t}\) \(2\pi\delta(\omega - \omega_0)\)
9 \(\cos(\omega_0 t)\) \(\frac{\pi}{2}[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)]\)
10 \(\sin(\omega_0 t)\) \(\frac{-j\pi}{2}[\delta(\omega - \omega_0) - \delta(\omega + \omega_0)]\)
11 \(e^{-at}u(t); a > 0\) \(\frac{1}{a + j\omega}\)
12 \(te^{-at}u(t); a > 0\) \(\frac{1}{(a + j\omega)^2}\)
13 \(e^{-|at|}; a > 0\) \(\frac{2a}{a^2 + \omega^2}\)
14 \(e^{-|t|}\) \(\frac{2}{\omega^2 + 1}\)
15 \(\frac{1}{\pi t}\) \(-j\text{sgn}(\omega)\)
16 \(\text{rect}(t/\tau)\) \(\tau\text{sinc}(\omega\tau/2)\)
17 \(\delta(t/\tau)\) \(\tau\text{sinc}(\omega\tau/2)\)
18 \(\text{tri}(t/\tau)\) \(\tau^2\text{sinC}^2(\omega\tau/4)\)
19 \(\sin(\omega_0 t)\pi(t)\) \(P_a(\omega)\)
20 \(\cos(\omega_0 t)\pi(t)\) \(\frac{\pi}{2}[P_a(\omega - \omega_0) + P_a(\omega + \omega_0)]\)

Fourier Sine Transform

The Fourier Sine Transform is a variant of the Fourier Transform that specifically deals with odd functions and is often used in solving partial differential equations. It is defined as:

\[\mathcal{F}_s[f(x)] = 2\int_{0}^{\infty} f(x) \sin(2\pi k x) dx\]

Fourier Cosine Transform

The Fourier Cosine Transform is another variant that deals with even functions and is also essential in solving differential equations and signal processing. It is defined as:

\[\mathcal{F}_c[f(x)] = 2\int_{0}^{\infty} f(x) \cos(2\pi k x) dx\]