Unsymmetrical Faults Solved Problems

Demonstrative Video


Revision of important Concepts

image

Problem-1

A 25 MVA, 13.2 kV alternator with solidly grounded neutral has a sub-transient reactance of 0.25 pu. The negative and zero sequence reactance are 0.35 and 0.1 pu, respectively. A single line to ground fault occurs at the terminals of an unloaded alternator. Neglecting resistance, determine

Solution-1

\[\begin{aligned} I_{a1}& = \dfrac{E_a}{Z_1+Z_2+Z_0}\\ &= \dfrac{1}{j0.7} = -j1.428 \end{aligned}\] image

\[\begin{aligned} V_{b1}=& \lambda^{2} V_{a_{1}}\\ &=(-0.5-j 0.866)(0.643) \\ &=-0.3215-j 0.5568 \\ V_{b2}=& \lambda V_{a_{2}}\\ &=(-0.5+j 0.866)(-0.50) \\ &=(0.25-j 0.433) \\ V_{b0} &=V_{a_{0}}=V_{c_{0}}=-0.1428 \end{aligned}\] \[\begin{aligned} V_{c1} &=\lambda V_{a_{1}}\\ &=(-0.5+j 0.866)(0.643) \\ &=-0.3215+j 0.5568 \\ V_{c2} &=\lambda^{2} V_{a_{2}}\\ &=(-0.5-j 0.866)(-0.5) \\ &=0.25+j 0.433 \end{aligned}\]

\[\begin{aligned} V_{b} &=-0.3215-j 0.5568+0.25-j 0.433-0.1428 \\ &=-0.2143-j 0.9898 \\ V_{c} &=-0.3215+j 0.5568+0.25+j 0.433-0.1428 \\ &=-0.2143+j 0.9898 \end{aligned}\]

Problem-2

Determine the fault current and the line-to-line voltage at the fault when a line-to-line fault occurs at the terminals of the alternator described in the Previous question.

Solution-2

\[\begin{aligned} I_{a_{1}} &=\frac{E_{a}}{Z_{1}+Z_{2}}=\frac{1+j 0.0}{j 0.25+j 0.35} \\ &=\frac{1+j 0.0}{j 0.6}=-j 1.667 \end{aligned}\] image

Problem-3

Determine the fault current and the line-to-line voltages at the fault when a double line-to-ground fault occurs at the terminals of the alternator described in the previous question

Solution-3

\[\begin{aligned} V_{a_{1}} &=1+j 0.0-(-j 3.0506)(j 0.25) \\ &=1-0.7626=0.2374 \\ V_{a_{2}} &=V_{a_{0}}=0.2374 \\ I_{a_{2}} &=-\frac{V_{a_{2}}}{Z_{2}}=-\frac{0.2374}{j 0.35}=j \frac{0.2374}{0.35}=j 0.678 \\ I_{a_{0}} &=-\frac{V_{a_{0}}}{Z_{0}}=-\frac{0.2374}{j 0.1}=j 2.374\\ I_{a_{2}}+I_{a_{0}}&=j 0.678+j 2.374=j 3.05=-I_{a_{1}} \end{aligned}\]

The line-to-line fault voltage, \[\begin{aligned} V_{a b} &=V_{a}=0.7122 \times \frac{13.2}{\sqrt{3}}=5.42 \mathrm{kV} \\ V_{a c} &=V_{a}=0.7122 \times \frac{13.2}{\sqrt{3}}=5.42 \mathrm{kV} \\ V_{b c} &=0.0 \mathrm{kV} \end{aligned}\]