Transmission Line Capacitance Calculation
Demonstrative Video
VIDEO
Problem-1
Calculate the capacitance of phase to neutral per km of a \(3\phi\) line having conductor of 2 cm
diameter placed at the corners of a triangle with sides of lengths 5m,
6m, 7m respectively. Assume that the line is fully transposed and
carries only balanced load.
Solution-1
Diameter = 2 cm
GMR = Radius = 1 cm = 0.01 m
GMD = \(\sqrt[3]{5\times6\times7}=
5.9439\) m
\[\begin{aligned}
C_n & = \dfrac{2\pi\epsilon}{ln\left(\dfrac{GMD}{GMR}\right)} \\
& = \dfrac{2\pi\times 8.85\times
10^{-12}}{ln\left(\dfrac{5.9439}{0.01}\right)}\\
& = 8.7\times 10^{-12}~\text{F/m}
\end{aligned}\]
Capacitance (Line to neutral)
Problem-2
What is the capacitance of neutral/km of a single phase line composed
of number 2 single strand conductor radius 0.328 cm, spaced 3 m apart
and 7.5 m above the ground ? (with and without the earth effect)
Problem-3
Calculate the 50 Hz susceptance to neutral per kilometre of a double
circuit three phase line with transposition as shown in the fig. given
each conductor is 7 m apart and radius of each conductor is 1.38 cm.
Solution-3
\[C_{n}=\dfrac{2\pi\varepsilon}{ln\left(\dfrac{D_{eq}}{D_{s}^{b}}\right)}~F/m\]
Note:
\[D_{s}^{b}=\begin{cases}
\sqrt[4]{\left(r\times d\right)^{2}}=\sqrt{r\cdot d} &
2~\mbox{strand}\\
\sqrt[9]{\left(r\times d\times d\right)^{3}}=\sqrt[3]{r\cdot d}
& 3~\mbox{strand}\\
\sqrt[16]{\left(r\times d\times d\times
d\times\sqrt{2}\right)^{4}}=1.09\sqrt[4]{r\cdot d} & 4~\mbox{strand}
\end{cases}\]
Given \(D=7 \mathrm{m}\) and
\(r=0.0138 \mathrm{m}\)
\[\begin{array}{l}
\text { Dca }=\sqrt[4]{14 \times 7 \times 14 \times 35}=14.803
\mathrm{m} \\
G M D=\sqrt[3]{14.803 \times 11.732^{2}}=12.706 \mathrm{m}
\end{array}\]
Dbc Dab GMD:
\[\mathrm{Dsa}=\mathrm{Dsb}=\mathrm{Dsc}=\sqrt{0.0138
\times 21}=0.538 \mathrm{m}\]
GMR:
\[\begin{aligned}
\text { Capacitance } \quad \mathrm{Cn}&=\frac{2 \pi \epsilon}{\ln
\left(\frac{G M D}{G M R}\right)} \mathrm{F} / \mathrm{m} \\
&=\frac{2 \pi \times 8.854 \times 10^{-12}}{\ln
\left(\frac{12.706}{0.528}\right)} \\
&=0.0175 \times 10^{-9} \mathrm{F} / \mathrm{m} \\
&=0.0175 \mu \mathrm{F} / \mathrm{km}
\end{aligned}\]
\[\begin{aligned}
\text { Susceptance } B &=314 \times 0.0175 \\
&=5.4919 \times 10^{-6} \mathrm{F} / \mathrm{km}
\end{aligned}\]
Problem-4
A three-phase double-circuit line is shown in figure, the diameter of
each conductor is 2.0 cm. The line is transposed & carries balanced
load, the capacitance per phase to neutral of the line is?
Solution-4
\[\begin{array}{c}
r=0.01 m \\
D_{a b}=\sqrt{2 \times 6.32}=3.555=D_{b c} \\
D_{c a}=\sqrt{6 \times 4}=4.899 \\
D_{e q}=\sqrt[3]{D_{a b}} \times D_{b c} \times D_{c a}=3.955 m
\end{array}\]
\[\begin{array}{l}
\mathrm{D}_{\mathrm{sa}}=\sqrt{0.01 \times
7.21}=0.2685=\mathrm{D}_{\mathrm{sc}}\\
\mathrm{D}_{\mathrm{sb}}=\sqrt{0.01 \times 6.00}=0.2449 \\
\mathrm{D}_{\mathrm{s}}=\sqrt[3]{(0.2685)^{2} \times
0.2449}=0.261
\end{array}\]
Self GMD(calculated from the first transposition cycle)
\[\begin{array}{l}
\mathrm{C}_{\mathrm{n}}=\frac{2 \pi \epsilon_{0}
\epsilon_{r}}{\ln (d / r)} \\
=\frac{2 \pi \times 8.85 \times 10^{-12} \times 1}{\ln
\left(\frac{3.955}{0.261}\right)} \\
=2.045 \times 10^{-11} \\
=0.02045 \mu \mathrm{F} / \mathrm{km}
\end{array}\]
Capacitance to neutral
Problem-5
Consider a 500 kV, three-phase bundles conductor line as shown in the
figure, what is the capacitive reactance to neutral in ohms/km at 50
Hz
Solution-5
\[\begin{aligned}
&\begin{array}{l}
\mathrm{d}=15 \mathrm{m}, \quad \mathrm{S}=0.5 \mathrm{m},
\quad \mathrm{r}=0.015 \mathrm{m}
\end{array}
\end{aligned}\]
Given data:
GMD and GMR:
\[\begin{aligned}
&\begin{array}{l}
\mathrm{D}_{\mathrm{eq}}=\sqrt[3]{\mathrm{D}_{\mathrm{ab}}
\times \mathrm{D}_{\mathrm{bc}} \times \mathrm{D}_{\mathrm{ca}}} \\
=\sqrt[3]{15 \times 15 \times 30}=18.89 \\
\mathrm{D}_{\mathrm{s}}=\sqrt{0.015 \times 0.5}=0.0866 \\
\end{array}
\end{aligned}\]
Capacitance
\[\begin{aligned}
\mathrm{C}_{\mathrm{n}}&=\frac{2 \pi \epsilon_{0}
\epsilon_{r}}{\ln (d / r)} \\
&=\frac{2 \pi \times 8.85 \times 10^{-12} \times 1}{\ln
\left(\frac{18.89}{0.0866}\right)}=0.0103 \mu \mathrm{F} / \mathrm{km}
\end{aligned}\]