Determine the following quantities for the circuit shown
line currents
phase voltages of the load
line voltages of the load
phase voltages of the source
line voltages of the source
The 3 line currents (of both load & source) are: \[\begin{array}{l} \mathbf{I}_{a A}=\frac{\mathbf{V}_{a^{\prime} n}}{Z_{g a}+Z_{1 a}+Z_{A}}=\frac{120 \angle 0^{\circ}}{40+j 30}=\left(2.4 \angle-36.87^{\circ}\right) \mathrm{A} \\ \mathbf{I}_{b B}=\mathbf{I}_{a A}<-120^{\circ}=\left(2.4 \angle-156.87^{\circ}\right) \mathrm{A} \\ \mathbf{I}_{c C}=\mathbf{I}_{a A}<+120^{\circ}=\left(2.4 \angle+83.13^{\circ}\right) \mathrm{A} \end{array}\] The 3 phase voltages of the load are: \[\begin{array}{l} \mathbf{V}_{A N}=\mathbf{I}_{a A} Z_{A}=\left(2.4 \angle-36.87^{\circ}\right)(39+j 28)=\left(115.22 \angle-1.19^{\circ}\right) \mathrm{V}\\ \mathbf{V}_{B N}=\mathbf{V}_{A N} \angle-120^{\circ}=\left(115.22 \angle-121.19^{\circ}\right) \mathrm{V} \\ \mathbf{V}_{C N}=\mathbf{V}_{A N} \angle+120^{\circ}=\left(115.22 \angle+118.81^{\circ}\right) \mathrm{V} \end{array}\]
The 3 line voltages of the load are:
\[\begin{aligned} \mathrm{V}_{A B} &=\left(\sqrt{3} \angle 30^{\circ}\right) \mathbf{{V}_{A N}} \\ &=\left(\sqrt{3} \angle 30^{\circ}\right)\left(115.22 \angle-1.19^{\circ}\right) \\ &=\left(199.58<+28.81^{\circ}\right) \mathrm{V} \end{aligned}\]
\[\begin{aligned} \mathrm{V}_{B C} &=\mathbf{V}_{A B} \angle-120^{\circ} \\ &=\left(199.58 \angle-91.19^{\circ}\right) \mathrm{V} \\ \mathrm{{V}_{C A}} &=\mathbf{V}_{A B} \angle+120^{\circ} \\ &=\left(199.58 \angle+148.81^{\circ}\right) \mathrm{V} \end{aligned}\]
The 3 phase voltages of the source are: \[\begin{aligned} \mathbf{V}_{a n}=\mathbf{V}_{a^{\prime} \eta}-\mathbf{I}_{a A} Z_{g a} &=120-\left(2.4 \angle-36.87^{\circ}\right)(0.2+j 0.5) \\ =&\left(118.9 \angle-0.32^{\circ}\right) \mathrm{V} \\ \mathbf{V}_{b n}=& \mathbf{V}_{a n} \angle-120^{\circ}=\left(118.9 \angle-120.32^{\circ}\right) \mathrm{V} \\ \mathbf{V}_{c n}=& \mathbf{V}_{a n} \angle+120^{\circ}=\left(118.9 \angle+119.68^{\circ}\right) \mathrm{V} \end{aligned}\] The three line voltages of the source are: \[\begin{aligned} \mathbf{V}_{a b} &=\left(\sqrt{3} \angle 30^{\circ}\right)\mathrm{V_{a n}}=\left(\sqrt{3} \angle 30^{\circ}\right)\left(118.9 \angle-0.32^{\circ}\right) \\ &=\left(205.94 \angle+29.68^{\circ}\right) \mathrm{V} \\ \mathbf{V}_{b c} &=\mathbf{V}_{a b} \angle-120^{\circ}=\left(205.94 \angle-90.32^{\circ}\right) \mathrm{V} \\ \mathbf{V}_{c a} &=\mathbf{V}_{a b} \angle+120^{\circ}=\left(205.94 \angle+149.68^{\circ}\right) \mathrm{V} \end{aligned}\]
The equivalent Y-Y configuration of a circuit is shown. Determine the complex powers provided by the source and dissipated by the line of a a-phase?
The line current of a-phase can be calculated by the complex power is: \[\begin{aligned} S_{\phi}& =\mathbf{V}_{\phi} \mathbf{I}_{\phi}^{*}\\ \Rightarrow (160+j 120) 10^{3}&=\frac{600}{\sqrt{3}} \mathbf{I}_{a A}^{*} \\ \Rightarrow \mathbf{I}_{a A}& =\left(577.35 \angle-36.87^{\circ}\right) \mathrm{A} \end{aligned}\] The a-phase voltage of the source is: \[\begin{aligned} \mathbf{V}_{a n}& =\mathbf{V}_{A N}+\mathbf{I}_{a A} Z_{1 a} \\ &=600 / \sqrt{3}+\left(577.35 \angle-36.87^{\circ}\right)(0.005+j 0.025)\\ &=\left(357.51 \angle 1.57^{\circ}\right) \mathrm{V} \end{aligned}\]
The complex power provided by the source of aphase is: \[\begin{aligned} S_{a n} &=\mathbf{V}_{a n} \mathbf{I}_{a A}^{*}=\left(357.51 \angle 1.57^{\circ}\right)\left(577.35 \angle 36.87^{\circ}\right) \\ &=\left(206.41 \angle 38.44^{\circ}\right) \mathrm{kV} \mathrm{A} \end{aligned}\] The complex power dissipated by the line of a- phase is: \[\begin{aligned} S_{a A} &=\left|\mathbf{I}_{a A}\right|^{2} Z_{1 a}=(577.35)^{2}(0.005+j 0.025) \\ &=\left(8.50 \angle 78.66^{\circ}\right) \mathrm{kV} \mathrm{A} \end{aligned}\]
Each phase of a three-phase alternator, generates a voltage of 3810.5 V and can carry a maximum current of 30 A.
Find the following quantities:
line current,
line voltage
total kVA capacity,
if the alternator is connected in
star configuration
delta configuration
\(\text { Given data: }~~ E_{p h}=3810.5 \mathrm{V} ~~ I_{p h}=30 A\)
Star | Delta |
$$\begin{aligned} \Rightarrow & \text{Line current}~ \mathrm{I}_{t} =\mathrm{I}_{\mathrm{ph}}=30 \mathrm{A} \\ \Rightarrow & \text{Line voltage} ~\mathrm{E}_{\ell} =\sqrt{3} \mathrm{E}_{\mathrm{ph}}\\ & =6600 \mathrm{V} \\ \Rightarrow & \text{Total}~ \mathrm{kVA} =\sqrt{3} \mathrm{E}_{l} \mathrm{I}_{l} \\ =&\sqrt{3} \times 6600 \times 30 \times 10^{-3} \\ &=342.95 \end{aligned}$$ |
$$\begin{aligned} \Rightarrow & \mathrm{I}_{\ell}=\sqrt{3} \mathrm{I}_{\mathrm{ph}}=51.96 \mathrm{A} \\ \Rightarrow & \mathrm{E}_{\ell}=3810.5 \mathrm{V} \\ \Rightarrow & \text { Total kVA }=\sqrt{3} \mathrm{E}_{l} \mathrm{I}_{l} \\ =&\sqrt{3} \times 3810.5 \times 51.96 \times 10^{-3} \\ &=342.95 \end{aligned}$$ |
A balanced \(3-\phi\) load connected in star consists of \((6 + j 8)~\Omega\) impedance in each phase. It is connected to a \(3-\phi\) supply of 400 V, 50 Hz.
Find the following quantities:
magnitude of phase current
magnitude of line current
per phase power
total power.
Repeat the problem with the load impedance connected in delta
\[\begin{aligned} E_{ph}& =400 / \sqrt{3}=230.94 \mathrm{V}\\ Z&=(6+j 8) \Omega=10 \angle 53.13^{\circ} \Omega \\ \mathrm{I}_{\mathrm{ph}}&=230.94 / 10=23.094 \mathrm{A} \\ \end{aligned}\]
\[\begin{aligned} \mathrm{I}_{\ell}&=\mathrm{I}_{\mathrm{ph}}=23.094 \mathrm{A}\\ P_{1-\phi}&=E_{p h} I_{p h} \cos \theta\\ =&230.94 \times 23.094 \times \cos 53.13^{\circ}\\ & =3200 \mathrm{W} \end{aligned}\]
\[\begin{aligned} \mathrm{P}_{\mathrm{T}}&=\sqrt{3} \mathrm{E}_{l} \mathrm{I}_{l} \cos \theta \\ =&\sqrt{3} \times 400 \times 23.094 \times \cos 53.13^{\circ}\\ &=9600 \mathrm{W} \\ \text{or}~\mathrm{P}_{\mathrm{T}}&=3 \mathrm{P}=9600 \mathrm{W} \end{aligned}\]
\(E_{p h}=400 ~\mathrm{V} \quad Z=(6+j 8) \Omega=10 \angle 53.13^{\circ} \Omega\)
Phase current, \(\mathrm{I}_{\mathrm{ph}}=400 / 10=40 \mathrm{A}\)
Line current, \(\mathrm{I}_{\ell}=\sqrt{3} \mathrm{I}_{\mathrm{ph}}=69.282 \mathrm{A}\)
Per phase power, \(P=E_{p h} I_{p h} \cos \theta=400 \times 40 \times \cos 53.13^{\circ}=9600 \mathrm{W}\)
Total power, \(\mathrm{P}_{T}=\sqrt{3} \mathrm{E}_{\ell} \mathrm{I}_{\ell} \cos \theta=\sqrt{3} \times 400 \times 69.282 \times \cos 53.13^{\circ}=28800 \mathrm{W}\)
Alternatively, total power, \(\mathrm{P}_{\mathrm{T}}=3 \mathrm{P}=28800 \mathrm{W}\)
Determine the phase sequence of the set of voltages given by \[\begin{aligned} \mathrm{V}_{\mathrm{AN}} & =400 \cos \left(\omega \mathrm{t}-10^{\circ}\right) \mathrm{V} \\ \mathrm{v}_{\mathrm{BN}} & =400 \cos \left(\omega \mathrm{t}-250^{\circ}\right) \mathrm{V} \\ \mathrm{v}_{\mathrm{CN}} & =400 \cos \left(\omega \mathrm{t}-130^{\circ}\right) \mathrm{V} \end{aligned}\]
\[\begin{aligned} \mathrm{V}_{\mathrm{AN}} & =400 \cos \left(\omega \mathrm{t}-10^{\circ}\right) \mathrm{V} \\ \mathrm{v}_{\mathrm{BN}} & =400 \cos \left(\omega \mathrm{t}-250^{\circ}\right) \mathrm{V} \\ \mathrm{v}_{\mathrm{CN}} & =400 \cos \left(\omega \mathrm{t}-130^{\circ}\right) \mathrm{V} \end{aligned}\] Given voltage phasors are:
\[\begin{aligned} \mathrm{V}_{\mathrm{AN}}=282.8 \angle-10^{\circ} \\ \mathrm{V}_{\mathrm{BN}}=282.8 \angle-250^{\circ}\\ \mathrm{V}_{\mathrm{CN}}=282.8 \angle-130^{\circ} \end{aligned}\]
Note: \(\mathrm{V}_{\mathrm{C}}\) is lagging \(\mathrm{V}_{\mathrm{A}}\). Hence phase sequence is \(\mathrm{ACB}\)
In a three-phase balanced supply, voltage \(\mathrm{V}_{\mathrm{C}}=110 \angle 65^{\circ} \mathrm{V}\).
Taking the phase sequence as \(\mathrm{ABC}\), find
the phase voltage
the line voltages
\[\begin{aligned} \mathrm{V_A}& =\mathrm{Vc} \times 1 \angle-120^{\circ}=110 \angle-55^{\circ} \mathrm{V} \\ \mathrm{V_B}& =\mathrm{Vc} \times 1 \angle 120^{\circ}=110 \angle 185^{\circ} \mathrm{V} \\ \mathrm{V_C}& =110 \angle 65^{\circ} \mathrm{V} \end{aligned}\]
\[\begin{aligned} \mathrm{V_{AB}}& =\mathrm{V_A}-\mathrm{V_B}=190.5 \angle-25^{\circ} \mathrm{V} \\ \mathrm{V_{BC}}& =\mathrm{V_B}-\mathrm{V_C}=190.5 \angle-145^{\circ} \mathrm{V} \\ \mathrm{V_{CA}}&=\mathrm{V_C}-\mathrm{VA}=190.5 \angle 95^{\circ} \mathrm{V} \end{aligned}\]
A \(3-\phi\) 3-wire \(240~\mathrm{V}\) ABC system has a delta-connected load with impedances \[\mathrm{Z}_{\mathrm{AB}}=10 \angle 0^{\circ} \Omega ;~ \mathrm{Z}_{\mathrm{BC}}=10 \angle 30^{\circ} \Omega;~ \mathrm{Z}_{\mathrm{CA}}=15 \angle-30^{\circ} \Omega\] Taking \(\mathrm{V_{BC}}\) as reference, determine
$$\begin{aligned} \mathrm{V}_{\mathrm{BC}}&=240 \angle 0^{\circ} \mathrm{V}\\ \mathrm{V} \mathrm{CA} & =240 \angle-120^{\circ} \mathrm{V}\\ \mathrm{V}_{\mathrm{AB}}&=240 \angle-240^{\circ} \mathrm{V} \end{aligned}$$ |
$$\begin{aligned} \mathrm{Z}_{\mathrm{AB}}&=10 \angle 0^{\circ} \Omega \\ \mathrm{Z}_{\mathrm{BC}}&=10 \angle 30^{\circ} \Omega\\ \mathrm{Z}_{\mathrm{CA}}&=15 \angle-30^{\circ} \Omega \end{aligned}$$ |
Phase currents are: \[\begin{aligned} \mathrm{I_{BC}}&=\frac{\mathrm{V}_{\mathrm{BC}}}{\mathrm{Z}_{\mathrm{BC}}}=\frac{240 \angle 0^{\circ}}{10 \angle 30^{\circ}}=24 \angle-30^{\circ} \mathrm{A}=(20.7846-\mathrm{j} 12) \mathrm{A}\\ \mathrm{I_{CA}}& = \frac{\mathrm{V}_{\mathrm{CA}}}{\mathrm{Z}_{\mathrm{CA}}}=\frac{240 \angle-120^{\circ}}{15 \angle-30^{\circ}}=16 \angle-90^{\circ} \mathrm{A}=(0-\mathrm{j} 16) \mathrm{A}\\ \mathrm{I_{AB}}&==\frac{\mathrm{V}_{\mathrm{AB}}}{\mathrm{Z}_{\mathrm{AB}}}=\frac{240 \angle-240^{\circ}}{10 \angle 0^{\circ}}=24 \angle-240^{\circ} \mathrm{A}=(-12+\mathrm{j} 20.7846) \mathrm{A} \end{aligned}\]
Line currents are obtained by applying \(\mathrm{KCL}\) at junction \(\mathrm{A}, \mathrm{B}\) and \(\mathrm{C}\). Thus \[\begin{aligned} \mathrm{I_A}& =\mathrm{I}_{\mathrm{AB}}-\mathrm{I}_{\mathrm{CA}}=(-12+\mathrm{j} 20.7846)-(-\mathrm{j} 16)\\ & =(-12+\mathrm{j} 36.7846)=38.6925 \angle 108.07^{\circ} \mathrm{A}\\ \mathrm{I_B}&=\mathrm{I}_{\mathrm{BC}}-\mathrm{I}_{\mathrm{AB}}=(32.7846-\mathrm{j} 32.7846)=46.3644 \angle-45^{\circ} \mathrm{A}\\ \mathrm{I_C}&=\mathrm{I_{CA}}-\mathrm{I_{BC}}=(-20.7846-\mathrm{j} 4)=21.166 \angle-169.11^{\circ} \mathrm{A} \end{aligned}\]
\[\begin{aligned} \mathrm{R}_{\mathrm{AB}}&=10 ~\Omega \\ \mathrm{R}_{\mathrm{BC}}&=10 \cos 30^{\circ}=8.6603 ~\Omega \\ \mathrm{R}_{\mathrm{CA}}&=15 \cos 30^{\circ}=12.9904 ~\Omega \end{aligned}\]
Real power consumed by the load : \[\begin{aligned} &= \left(24^{2} \times 10\right)+\left(24^{2} \times 8.6603\right)+\left(16^{2} \times 12.9904\right)\\ &=14073.8 \mathrm{W}=14.0738 \mathrm{kW} \end{aligned}\]
A \(3-\phi\), 4 -wire, \(208~\mathrm{V}\) system has a star connected load with impedances
\[\mathrm{Z}_{\mathrm{A}}=6 \angle 0^{\circ} \Omega ;~ \mathrm{Z}_{\mathrm{B}}=6 \angle 30^{\circ} \Omega;~ \mathrm{Z}_{\mathrm{C}}=5 \angle 45^{\circ} \Omega\]
Taking the voltage \(\mathrm{V_{AN}}\) as reference, determine line and neutral currents. Draw the phasor diagram. Also calculate the real power consumed by the load.
\(\mathrm{Z}_{\mathrm{A}}=6 \angle \mathrm{0}^{\circ} \Omega ;~ \mathrm{Z}_{\mathrm{B}}=6 \angle 30^{\circ} \Omega\); \(\mathrm{Z}_{\mathrm{C}}=5 \angle 45^{\circ} \Omega\)
Taking the phase sequence as ABC,
$$\begin{aligned} \mathrm{V}_{\mathrm{AN}}&=\frac{208}{\sqrt{3}} \angle 0^{\circ} V\\ &=120.08 \angle 0^{\circ} \mathrm{V}\\ \mathrm{V}_{\mathrm{BN}}&=120.08 \angle-120^{\circ} \mathrm{V}\\ \mathrm{V}_{\mathrm{CN}}&=120.08 \angle-240^{\circ} \mathrm{V} \end{aligned}$$ |
$$\begin{aligned} \mathrm{I}_{\mathrm{A}}&=\frac{\mathrm{V}_{\mathrm{AN}}}{\mathrm{Z}_{\mathrm{A}}}=\frac{120.08}{6 \angle 0^{\circ}}\\ &=20.01 \angle 0^{\circ} \mathrm{A}\\ \mathrm{I}_{\mathrm{B}}&=\frac{\mathrm{V}_{\mathrm{BN}}}{\mathrm{Z}_{\mathrm{B}}}=\frac{120.08 \angle-120^{\circ}}{6 \angle 30^{\circ}}\\ &=20.01 \angle-150^{\circ} \mathrm{A}\\ \mathrm{I}_{\mathrm{C}}&=\frac{V_{C N}}{Z_{C}}=\frac{120.08 \angle-240^{\circ}}{5 \angle 45^{\circ}}\\ &=24.01 \angle 75^{\circ} \mathrm{A} \end{aligned}$$ |
$$\begin{aligned} I_{N}&=-\left(I_{A}+I_{B}+I_{C}\right)\\ &=(-8.89-j 13.19) A\\ &=15.91 \angle-124^{\circ} A \end{aligned}$$
Resistances in different phases are:
\(\mathrm{R}_{\mathrm{A}}=6 \Omega ~~ \mathrm{R}_{\mathrm{B}}=6 \cos 30^{\circ}=5.1962 \Omega ~~ \mathrm{R}_{\mathrm{C}}=3.53 \Omega\)
Real power consumed by the load \[\begin{aligned} =& \left(20.01^{2} \times 6\right)+\left(20.01^{2} \times 5.19\right)+\left(24.01^{2} \times 3.53\right) \\ =&6524.58~ \mathrm{W}= 6.5246 ~\mathrm{kW} \end{aligned}\]
A \(3-\phi\), 3-wire, 208 V, ACB system has star connected load with impedances \(\mathrm{Z}_{\mathrm{A}}=6 \angle 0^{\circ} \Omega ; ~ \mathrm{Z}_{\mathrm{B}}=6 \angle 30^{\circ} \Omega\) and \(\mathrm{Zc}=5 \angle 45^{\circ} \Omega .\) Taking \(\mathrm{V}_{\mathrm{BC}}\) as reference, Determine
line currents
the voltage across load impedances
$$\begin{aligned} \mathrm{V}_{\mathrm{BC}}&=208 \angle \mathrm{0}^{\circ} \mathrm{V} \\ \quad \mathrm{V}_{\mathrm{CA}}&=208 \angle 120^{\circ} \mathrm{V} \\ \quad \mathrm{V}_{\mathrm{AB}}&=208 \angle-120^{\circ} \mathrm{V} \end{aligned}$$ |
$$\begin{aligned} Z_{A}&=6 \Omega \\ Z_{B}&=(5.1962+j 3) \Omega \\ Z_{C}&=(3.5355+j 3.5355) \Omega \end{aligned}$$ |
\(\left[\begin{array}{cc}Z_{A}+Z_{B} & -Z_{B} \\ -Z_{B} & Z_{B}+Z_{c}\end{array}\right]\left[\begin{array}{l}I_{1} \\ I_{2}\end{array}\right]=\left[\begin{array}{c}V_{A B} \\ V_{B C}\end{array}\right]\) \(\left[\begin{array}{cc}11.1962+j 3 & -5.1962-j 3 \\ -5.1962-j 3 & 8.7317+j 6.5355\end{array}\right]\left[\begin{array}{l}I_{1} \\ I_{2}\end{array}\right]=\left[\begin{array}{c}208 \angle-120^{\circ} \\ 208 \angle 0^{\circ}\end{array}\right]\)
Determinant of the coefficient matrix \(= 90.9323 \angle 48.580\)
\(\left[\begin{array}{l}\mathrm{I}_{1} \\ \mathrm{I}_{2}\end{array}\right]=\frac{1}{90.9323 \angle 48.58^{\circ}}\left[\begin{array}{cc}8.7317+\mathrm{j} 6.5355 & 5.1962+\mathrm{j} 3 \\ 5.1962+\mathrm{j} 3 & 11.1962+\mathrm{j} 3\end{array}\right]\left[\begin{array}{c}208 \angle-120^{\circ} \\ 208 \angle 0^{\circ}\end{array}\right]\) \(=\left[\begin{array}{c}-3.6097-\mathrm{j} 22.9799 \\ 11.7974-\mathrm{j} 23.7446\end{array}\right]=\left[\begin{array}{l}23.2617 \angle-98.93^{\circ} \\ 26.5139 \angle-63.58^{\circ}\end{array}\right]\)
\(\left[\begin{array}{l}\mathrm{I}_{1} \\ \mathrm{I}_{2}\end{array}\right]=\left[\begin{array}{l}-3.6097-\mathrm{j} 22.9799 \\ 11.7974-\mathrm{j} 23.7446\end{array}\right]\)
From the mesh currents, line currents can be calculated:
\(\mathrm{I}_{\mathrm{A}}=\mathrm{I}_{1}=(-3.6109-\mathrm{j} 22.9797) \mathrm{A}=23.2617 \angle-98.93^{\circ} \mathrm{A}\) \(\mathrm{I}_{B}=\mathrm{I}_{2}-\mathrm{I}_{1}=(15.4071-\mathrm{j} 0.7647) \mathrm{A}=15.426 \angle-2.84^{\circ} \mathrm{A}\) \(\mathrm{I_C}=-\mathrm{I}_{2}=(-11.7974+\mathrm{j} 23.7446) \mathrm{A}=26.5139 \angle 116.42^{\circ} \mathrm{A}\)
Voltages across the loads can be calculated as:
\(\mathrm{V}_{\mathrm{AO}}=\mathrm{Z}_{\mathrm{A}} \mathrm{I}_{\mathrm{A}}=(-21.6654-\mathrm{j} 137.8782) \mathrm{A}=139.5702 \angle-98.93^{\circ} \mathrm{V}\) \(\mathrm{V}_{\mathrm{BO}}=\mathrm{Z}_{\mathrm{B}} \mathrm{I}_{\mathrm{B}}=(82.3503+\mathrm{j} 42.2497) \mathrm{A}=92.556 \angle 27.16^{\circ} \mathrm{V}\) \(\mathrm{V}_{\mathrm{CO}}=\mathrm{Z}_{\mathrm{C}} \mathrm{I_C}=(-125.6599+\mathrm{j} 42.2404) \mathrm{A}=132.5695 \angle 161.42^{\circ} \mathrm{V}\)
The power input to a \(2000 ~V, 50 \mathrm{Hz},\) 3-phase motor is measured by two wattmeters which indicate \(100 \mathrm{kW}\) and \(300 \mathrm{kW}\) respectively. Calculate
the input power
the power factor
the line current.
Given : \(\quad \mathrm{W}_{1}=100 ~\mathrm{kW}\) and \(\mathrm{W}_{2}=300~ \mathrm{kW}\)
Input power: \(\mathrm{P}=\mathrm{W}_{1}+\mathrm{W}_{2}=400~ \mathrm{kW}\)
Power factor angle
\[\begin{aligned} \quad \tan \theta& =\sqrt{3} \frac{\mathrm{W}_{2}-\mathrm{W}_{1}}{\mathrm{W}_{1}+\mathrm{W}_{2}}\\ &=\sqrt{3} \times \frac{200}{400}=0.8660\\ \theta& =40.89^{\circ} \\ \cos \theta&=0.7559 \end{aligned}\]
Power factor \(=0.7559\) lagging
Three-phase power, \(P=\sqrt{3} V_{l} I_{l} \cos \theta\)
Line current, \(\mathrm{I}_{l}=\frac{400 \times 10^{3}}{\sqrt{3} \times 2000 \times 0.7559}=152.76 \mathrm{A}\)
Two watt meters are connected to measure the power in a 3-phase 3-wire balanced load. Determine the total power and power factor, if the two watt-meters read
\(1000 \mathrm{W}\) each, both positive
\(1000 \mathrm{W}\) each of opposite sign.
Case-1: Given data: \(\quad \mathrm{W}_{1}=1000~ \mathrm{W} ; \quad \mathrm{W}_{2}=1000 \mathrm{W}\)
Total power \(\mathrm{P}=\mathrm{W}_{1}+\mathrm{W}_{2}=2000 \mathrm{W}\)
\(\tan \theta=\sqrt{3} \frac{\mathrm{W}_{2}-\mathrm{W}_{1}}{\mathrm{W}_{1}+\mathrm{W}_{2}}=0\)
Power factor angle \(\theta=0\)
Power factor \(=\cos 0^{\circ}=1.0\)
Case-2: Given data: \(\quad \mathrm{W}_{1}=-1000 \mathrm{W} ; \quad \mathrm{W}_{2}=1000 \mathrm{W} ; \quad\)
Total power \(\mathrm{P}=\mathrm{W}_{1}+\mathrm{W}_{2}=0\)
\(\tan \theta=\sqrt{3} \frac{W_{2}-W_{1}}{W_{1}+W_{2}}=\infty ;\)
Power factor angle \(\theta=90^{\circ}\)
Power factor = 0 lagging.
Across \(400 \mathrm{V}, 3\) -phase supply mains, a star-connected balanced load of \((16+\mathrm{j} 12) \Omega\) impedance is connected.
Taking \(V_a\) as reference, determine the line currents and the power absorbed by the load
If two wattmeters are used to measure the power, what will be the readings of the wattmeters?
\(\quad V_{A}=\frac{400}{\sqrt{3}} \angle 0^{\circ}=230.94 \angle 0^{\circ}~V ~~ Z=(16+j 12)=20 \angle 36.87^{\circ} \Omega\)
Line currents are: \[\begin{aligned} \mathrm{I}_{\mathrm{A}}&=\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{Z}}=11.54 \angle-36.87^{\circ} \mathrm{A} \\ \mathrm{I}_{\mathrm{B}}&=11.54 \angle-156.87^{\circ} \mathrm{A}\\ \mathrm{I}_{\mathrm{C}}&=11.54 \angle 83.13^{\circ} \mathrm{A} \end{aligned}\]
Total power \[P=\sqrt{3} V_{l} I_{l} \cos \theta=\sqrt{3} \times 400 \times 11.54 \cos 36.87^{\circ}=6400 \mathrm{W}\]
Watt meter readings: \[\begin{aligned} \quad \mathrm{W}_{1}&=\sqrt{3} \mathrm{V}_{\text {ph }} \mathrm{I}_{\text {ph }} \cos \left(\theta+30^{\circ}\right)\\ &=\sqrt{3} \times 230.94 \times 11.54 \cos 66.87^{\circ}=1814.35 \mathrm{W}\\ \mathrm{W}_{2}&=\sqrt{3} \mathrm{V}_{\mathrm{ph}} \mathrm{I}_{\mathrm{ph}} \cos \left(\theta-30^{\circ}\right)\\ & =\sqrt{3} \times 230.94 \times 11.54 \cos 6.87^{\circ}=4585.64 \mathrm{W} \end{aligned}\]