Sequence Networks in Power System

Demonstrative Video


Problem

Determine the positive, negative, and zero sequence networks for the system shown in Fig. Assume zero sequence reactances for the generator and synchronous motors as 0.06 p.u. Current limiting reactors of 2.5 \(\Omega\) are connected in the neutral of the generator and motor no. 2. The zero sequence reactance of the transmission line is j300 \(\Omega\)

image

Solution

Let us choose the generator ratings as new base values for entire system:

Sequence reactance of Generator-G

Sequence reactance of Transformer-T1

Sequence reactance of TL

Sequence reactance of Transformer-T2

Sequence reactance of Syn Motor-M1

Sequence reactance of Syn Motor-M2

\[\begin{aligned} \mathrm{X_{p.u,new}} & =\mathrm{X_{p.u,old}}\times\left(\dfrac{\mathrm{kV_{b,old}}}{\mathrm{kV_{b,new}}}\right)^{2}\times\dfrac{\mathrm{MVA_{b,new}}}{\mathrm{MVA_{b,old}}}\\ & =0.25\times\left(\dfrac{10}{11}\right)^{2}\times\dfrac{25}{7.5}=0.689\mathrm{p.u.}\\ \mathrm{X_{M2,1}} & =\mathrm{X_{M2,2}}=0.689\mathrm{p.u.}\\ \mathrm{X_{M2,0}} & =0.06\times\left(\dfrac{10}{11}\right)^{2}\times\dfrac{25}{7.5}=0.165\mathrm{p.u.}\\ Z_{b} & =\dfrac{\left(\mathrm{kV_{b,new}}\right)^{2}}{\mathrm{MVA_{b,new}}}=\dfrac{11^{2}}{25}=4.84\Omega\\ \mathrm{X_{p.u.}\text{neutral reactance}} & =\dfrac{\text{Actual reactance}}{Z_{b}}=\dfrac{2.5}{4.84}=0.517\mathrm{p.u.} \end{aligned}\]

Positive Sequence Network

image

Negative Sequence Network

image

Zero Sequence Network

image