\[\boxed{Z_B = \dfrac{KV_B^2}{MVA_B}}\]
\[\boxed{Z_{p u(n e w)}=Z_{p u(g i v e n)}\left[\frac{M V A_{B(n e w)}}{M V A_{B(g i v e n)}}\right]\left[\frac{k V_{B(g i v e n)}}{k V_{B(n e w)}}\right]^{2}}\]
A three-phase generator with rating 1000 kVA, 33 kV has its armature resistance and synchronous reactance as 20 \(\Omega\)/phase and 70 \(\Omega\)/phase. Calculate p.u. impedance of the generator.
The generator ratings are chosen as base \(\mathrm{kV}\) and base \(\mathrm{kVA}\).
Base kilovolt, \(\mathrm{kV}_{\mathrm{b}}=33 \mathrm{kV}\)
Base kilovoltampere, \(\mathrm{kVA}_{\mathrm{b}}=1000 \mathrm{kVA}\)
Base impedance \[Z_{b}=\frac{\left(k V_{b}\right)^{2}}{M V A_{b}}=\frac{(33)^{2}}{1000 / 1000}=1089 \Omega\]
Actual impedance per phase \[\mathrm{Z}=(20+\mathrm{j} 70) \Omega / phase\]
p.u. impedance \[Z_{\mathrm{pu}}=\frac{\text { Actual impedance }}{\text { Base impedance }}=\frac{Z}{Z_{b}}=\frac{20+j 70}{1089}=0.018+j 0.064 \mathrm{p} . \mathrm{u}\]
A three phase, \(\Delta\) -Y transformer with rating \(100 \mathrm{kVA}, 11 \mathrm{kV} / 400 \mathrm{~V}\) has its primary and secondary leakage reactance as \(12 \Omega /\) phase and \(0.05 \Omega /\) phase respectively. Calculate the p.u. reactance of transformer.
Case-1: HV winding (primary) rating chosen as base value
Base kilovolt, \(\mathrm{kV}_{\mathrm{b}}=11 \mathrm{kV}\)
Base kilo volt-ampere, \(\mathrm{kVA}_{\mathrm{b}}=100 \mathrm{kVA}\)
Base impedance per phase \[\mathrm{Z}_{\mathrm{b}}=\frac{\left(\mathrm{kV}_{\mathrm{b}}\right)^{2}}{\mathrm{MVA}_{\mathrm{b}}}=\frac{(11)^{2}}{100 / 1000}=1210 \Omega\]
Transformer line voltage ratio, \(\mathrm{K}=\dfrac{400}{11,000}=0.0364\)
Total leakage reactance referred to primary \[\begin{aligned} \mathrm{X}_{01}&=\mathrm{X}_{1}+\mathrm{X}_{2}^{*}\\ &=\mathrm{X}_{1}+\frac{\mathrm{X}_{2}}{\mathrm{~K}^{2}}\\ &=12+\frac{0.05}{(0.0364)^{2}}=12+37.737 = 49.737 \Omega / \text { phase } \end{aligned}\]
p. u. reactance per phase \[\begin{aligned} & X_{p u}=\frac{\text { Total leakage reactance }}{\text { Base impedance }}\\ &=\frac{X_{01}}{Z_{b}}=\frac{49.737}{1210}=0.0411 \mathrm{p.u} \end{aligned}\]
Case-2: LV winding (secondary) rating chosen as base value
Base kilovolt, \(\mathrm{kV}_{\mathrm{b}}=400 / 1000=0.4 \mathrm{kV}\)
Base kilovoltampere, \(\mathrm{kVA}_{\mathrm{b}}=100 \mathrm{kVA}\)
Base impedance per phase \[\mathrm{Z}_{\mathrm{b}}=\frac{\left(\mathrm{kV}_{\mathrm{b}}\right)^{2}}{\mathrm{MVA}_{\mathrm{b}}}=\frac{(0.4)^{2}}{100 / 1000}=1.6 \Omega\]
Transformer line voltage ratio, \(\mathrm{K}=\dfrac{400}{11,000}=0.0364\)
Total leakage reactance referred to secondary \[\begin{aligned} \mathrm{X}_{02}&=\mathrm{X}_{1}^{\prime}+\mathrm{X}_{2}=\mathrm{K}^{2} \mathrm{X}_{1}+\mathrm{X}_{2}\\ &=(0.0364)^{2} \times 12+0.05\\ &=0.0159+0.05=0.0659 \Omega / \text { phase } \end{aligned}\]
p.u. reactance per phase, \(\mathrm{X}_{\mathrm{pu}}=\dfrac{\text { Total leakage reactance }}{\text { Base impedance }}=\dfrac{\mathrm{X}_{02}}{\mathrm{Z}_{\mathrm{b}}}=\dfrac{0.0659}{1.6}=0.0411 \mathrm{p}\).u.
Note:
It is observed that the p.u. reactance of a transformer referred to primary and secondary are same.
In \(3\phi\) transformer of the voltage ratio K is obtained using line values then using this value of K the phase impedance per phase of star-side can be directly transferred to delta side or vice versa
Using the P.U. system and taking into account the transformer percent impedances, solve for the current in each part of the three-phase system shown below. assume both transformers are either delta-delta or wye-wye connected and that there is no phase shift between primary and secondary current and voltage
Step-1: Separate by Voltage zones
Step-2: Assign base values
Step-3: Calculate \(Z_B\) for each zones
Step-4: Calculate \(Z_{p.u.}\) for each zone
Step-5: Calculate \(Z_{p.u}\) for Tran-1
Step-6: Calculate \(Z_{p.u}\) for Tran-2
Step-7: Calculate p.u. current and voltages
Step-8: Use Ohm’s Law to calculate p.u. current
Step-9: Calculate \(I_B\) in each zone
Step-10: Calculate actual current in each zone
Step-11: Check using T/F ratios