Bus-1 is assumed to be slack bus.
Total buses: \(n\)
Voltage-controlled buses (PV buses): \(m\)
PQ buses: \(n - m\)
\(\Delta P\) size: \((n - 1) \times 1\) (P specified for \(n-1\) buses)
\(\Delta Q\) size: \((n - m - 1) \times 1\) (Q for PQ buses only)
\(J_1\) size: \((n - 1) \times (n - 1)\)
\(J_2\) size: \((n - 1) \times (n - m - 1)\)
\(J_3\) size: \((n - m - 1) \times (n - 1)\)
\(J_4\) size: \((n - m - 1) \times (n - m - 1)\)
Total Jacobian Size \(\boxed{(2n - m - 2) \times (2n - m - 2)}\)
For \(\mathbf{J}_1\) (P-\(\delta\) terms)
Off-diagonal: \(\dfrac{\partial P_i}{\partial \delta_n} = -|Y_{in}||V_i||V_n|\sin(\theta_{in} + \delta_n - \delta_i) \quad (i \neq n)\)
Diagonal: \(\dfrac{\partial P_i}{\partial \delta_i} = \sum\limits_{\substack{n=1 \\ n \neq i}}^N |Y_{in}||V_i||V_n|\sin(\theta_{in} + \delta_n - \delta_i)\)
For \(\mathbf{J}_2\) (\(P-|V|\) terms)
Off-diagonal: \(\dfrac{\partial P_i}{\partial |V_n|} = |Y_{in}||V_i|\cos(\theta_{in} + \delta_n - \delta_i) \quad (i \neq n)\)
Diagonal: \(\dfrac{\partial P_i}{\partial |V_i|} = 2|Y_{ii}||V_i|\cos\theta_{ii} + \sum\limits_{\substack{n=1 \\ n \neq i}}^N |Y_{in}||V_n|\cos(\theta_{in} + \delta_n - \delta_i)\)
For \(\mathbf{J}_3\) (Q-\(\delta\) terms)
Off-diagonal: \(\dfrac{\partial Q_i}{\partial \delta_n} = -|Y_{in}||V_i||V_n|\cos(\theta_{in} + \delta_n - \delta_i) \quad (i \neq n)\)
Diagonal: \(\dfrac{\partial Q_i}{\partial \delta_i} = \sum\limits_{\substack{n=1 \\ n \neq i}}^N |Y_{in}||V_i||V_n|\cos(\theta_{in} + \delta_n - \delta_i)\)
For \(\mathbf{J}_4\) (\(Q-|V|\) terms)
Off-diagonal: \(\dfrac{\partial Q_i}{\partial |V_n|} = -|Y_{in}||V_i|\sin(\theta_{in} + \delta_n - \delta_i) \quad (i \neq n)\)
Diagonal: \(\dfrac{\partial Q_i}{\partial |V_i|} = -2|V_i||Y_{ii}|\sin\theta_{ii} - \sum\limits_{\substack{n=1 \\ n \neq i}}^N |Y_{in}||V_n|\sin(\theta_{in} + \delta_n - \delta_i)\)
Initialization
PQ buses: \(|V_i^{(0)}|=1.0\), \(\delta_i^{(0)}=0.0\)
PV buses: \(\delta_i^{(0)}=0.0\)
Power Mismatch
PQ: Compute \(\Delta P_i^{(k)}\), \(\Delta Q_i^{(k)}\)
PV: Compute \(\Delta P_i^{(k)}\)
Jacobian Matrix
Calculate \(J_1\)-\(J_4\) elements
Solve Linear System
\(J\cdot\Delta x = \Delta S\) via factorization
Update Variables
New \(|V_i^{(k+1)}|\), \(\delta_i^{(k+1)}\)
Convergence Check
Repeat until \(\max(|\Delta P|,|\Delta Q|) \leq \epsilon\)
Obtain the power flow solution by the Newton-Raphson method for the system shown by the SLD (impedances in pu on 100-MVA base).
Second Iteration
Third Iteration Setup
Converged Solution
Convergence Achieved
Solution obtained in just 3 iterations
Excellent numerical stability
Meets typical engineering accuracy requirements
\(V_2\): 0.97168 pu \(\angle\) -2.696°
\(V_3\): 1.04 pu \(\angle\) -0.4988°
\(Q_3\): 1.4617 pu
\(P_1\): 2.1842 pu
\(Q_1\): 1.4085 pu
3 iterations to converge
Robust numerical method
Suitable for large systems
Line flow calculations
Loss computation
Voltage stability analysis