The generalized circuit constants of a \(3\phi\), 220 kV rated voltage, medium length TL are: \[\begin{aligned} A = D & = 0.936 + j 0.16 = 0.936 \angle{0.98}\\ B & = 33.5 +j138 = 142\angle{76.4^\circ}~\Omega \\ C & = \left(-5.18+j914\right) \times 10^{-6}~\Omega \end{aligned}\] If the load at receiving end is 50 MW at 220 kV with power factor 0.9 lagging, then magnitude of line to line sending end voltage should be?
Power received by load = 50 MW
Current at receiving end \[\begin{aligned} & = \sqrt{3}V_rI_r\cos\phi \\ & = \dfrac{50\times 10^6}{\sqrt{3} \times 220 \times 10^3 \times 0.9}\\ & = 145.79~A \end{aligned}\] \(\cos\phi=0.9 \rightarrow \phi = 25.84^\circ\) \[I_r = 145.79\angle{25.84^\circ}\]
\[\begin{aligned} \mathbf{V_s} & =\mathbf{A} \mathbf{V}_{\mathbf{r}}+\mathbf{B I}_{\mathbf{r}} \\ &=0.936 \angle 0.98^{\circ} \times(220 / \sqrt{3}) \times 10^{3} \\ &+14.2 \angle 76.4^{\circ} \times 145.79 \angle-25.84^{\circ} \\ &=133.246 \angle 7.77^{\circ} \mathrm{kV} \end{aligned}\]
Line to line sending end \[\begin{aligned} \text { voltage } &=\sqrt{3} \times 133.246 \angle 7.77^{\circ} \mathrm{kV} \\ &=230.78 \angle 7.77^{\circ} \mathrm{kV} \end{aligned}\] Magnitude of line to line sending end voltage \[=230.78 \mathrm{kV}\]
The \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\) constant of a \(220~ \mathrm{kV}\) line are: \[\begin{array}{l} A=D=0.94 \angle 10^{\circ} \\ B=130 \angle 730^{\circ} \\ C=0.001 \angle 900^{\circ} \end{array}\] If the sending end voltage of the line for a given load delivered at nominal voltage is \(240 ~\mathrm{kV},\) the \(\%\) voltage regulation of the line is?
Voltage regulation \[\begin{aligned} &=\frac{\mathbf{V}_{\mathbf{R}(\mathrm{N} . \mathbf{L})}-\mathbf{V}_{\mathrm{R}(\mathrm{F} . \mathrm{L})}}{\mathrm{V}_{\mathrm{R}(\mathrm{F} . \mathrm{L})}} \times 100 \\ \mathrm{V}_{\mathrm{S}} &=\mathrm{AV}_{\mathrm{r}}+\mathrm{BI}_{\mathrm{r}} \end{aligned}\] Under no load condition \(\mathrm{I}_{\mathrm{R}}=0\) \[\begin{array}{l} \therefore V_{R(N . L)}=\dfrac{V_{S}}{A}=\dfrac{240 \times 10^{3}}{0.94} =255.3 \mathrm{kV} \end{array}\] \(\therefore \%\) Voltage regulation \[\begin{array}{l} =\dfrac{255.3-220}{220} \times 100 \\ =16 \% \end{array}\]
The ABCD parameters of a 3-phase overhead transmission line are: \[\begin{aligned} A &=D=0.9 \angle 0^{\circ} \\ B &=200 \angle 90^{\circ} \Omega \\ C &=0.95 \times 10^{-3} \angle 90^{\circ} \mathrm{S} \end{aligned}\] At no-load condition, a shunt inductive reactor is connected at receiving end of the line to limit the receiving-end voltage to be equal to sending-end voltage. The ohmic value of the reactor is?
Given: \[\begin{array}{l} \mathrm{A}=\mathrm{D}=0.9 \angle 0^{\circ} \\ \mathrm{B}=200 \angle 90^{\circ}\\ \mathrm{C}=0.95 \times 10^{-3} \angle 90^{\circ} \end{array}\]
\[\begin{array}{l} {\left[\begin{array}{ll} A^{1} & B^{1} \\ C^{1} & D^{1} \end{array}\right]=\left[\begin{array}{ll} A & B \\ C & D \end{array}\right]\left[\begin{array}{ll} 1 & 0 \\ Y & 1 \end{array}\right]} \end{array}\] \[\begin{array}{l} \mathrm{V}_{\mathrm{s}}=\mathrm{A}^{1} \mathrm{V}_{\mathrm{ro}} \\ \left|\mathrm{A}^{1}\right|=1.0 \text { to make }\left|\mathrm{V}_{\mathrm{r} 0}\right|=\mid \mathrm{V}_{\mathrm{s}} \end{array}\] \[\begin{aligned} \mathrm{A}+\mathrm{BY}&=1.0 \\ \mathrm{Y}&=\frac{0.1}{200 \angle 90^{\circ}} \\ \mathrm{Z}&=\mathrm{j} 2000 \Omega \\ \mathrm{X}_{\mathrm{L}}&=2000 \Omega \end{aligned}\]
A \(110~ \mathrm{kV}\) 3-phase TL as generalized circuit has constants as \[\begin{array}{l} A=D=0.95 \angle 2^{\circ} \\ B=60 \angle 70^{\circ} \Omega / \mathrm{ph} \\ C=0.6 \times 10^{-4} \angle 90^{\circ} \mathrm{S} / \mathrm{ph} \end{array}\] If no load voltage of transmission line is \(110 ~\mathrm{kV}\), then what is the power loss under no load condition?
\[\begin{aligned} \mathrm{V}_{\mathrm{rph}}&=\dfrac{110 \mathrm{kV}}{\sqrt{3}} \angle 0^{\circ} \\ \mathrm{V}_{\mathrm{sph}}&=\mathrm{A.V}_{\mathrm{rph}}\\ &=0.95 \times \frac{110}{\sqrt{3}} \angle 2^{\circ} \end{aligned}\] \[\begin{aligned} \mathrm{I}_{\mathrm{sph}}&=\mathrm{C} . \mathrm{V}_{\mathrm{rph}}\\ &=0.6 \times 10^{-4} \times \frac{110}{\sqrt{3}} \angle 90^{\circ} \\ \mathrm{NL} \mathrm{P}_{\text {loss }}&=3 .\left|\mathrm{V}_{\mathrm{sph}}\right|\left|\mathrm{I}_{\mathrm{sph}}\right| \cdot \cos \phi_{\mathrm{s}} \\ =& 3 \times 0.95 \times \frac{110}{\sqrt{3}} \times 0.6 \times 10^{-4} \times \frac{110}{\sqrt{3}} \times \cos 88^{\circ} \mathrm{MW} \\ =& 0.02 \mathrm{MW} \end{aligned}\]
The line constants of a \(200 \mathrm{km},\) 3-phase \(50 \mathrm{Hz}\) transmission line are given as following: \[\begin{array}{l} A=D=0.938 \angle 1.2^{\circ} \\ B=131.2 \angle 72.3^{\circ} \Omega / \mathrm{ph} \\ C=0.001 \angle 90^{\circ} \mathrm{S} / \mathrm{ph} \end{array}\] The sending-end voltage is \(230 \mathrm{kV}\). The value of line charging current when load is disconnected will be?
Sending-end phase voltage \[\mathrm{V_s}=\frac{230}{\sqrt{3}}=132.79 \mathrm{kV}\]
Receiving end current will be zero, when the load is disconnected \(I_{R}=0\)
Sending-end phase voltage is given as \[\mathrm{V}_{\mathrm{s}}=\mathrm{AV}_{\mathrm{R}}+\mathrm{BI}_{\mathrm{R}}=\mathrm{AV}_{\mathrm{R}}+\mathrm{B} \times 0\]
Receiving-end voltage, \[\mathrm{V}_{\mathrm{R}}=\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{A}}=\frac{132.79 \angle 0^{\circ}}{0.938 \angle 1.2^{\circ}}=141.5 \angle-12^{\circ} \mathrm{kV}\]
Line charging current \[\begin{aligned} \mathrm{I}_{C}=\mathrm{CV}_{\mathrm{R}} &=0.001 \angle 90^{\circ} \times 141.5 \times 10^{3} \angle-12^{\circ} \\ &=141.5 \angle 88.8^{\circ} \mathrm{A} \end{aligned}\]
A 3-phase, 50-Hz overhead TL 100 km long has the following constants:
\[\begin{aligned} \text{Resistance/km/phase} & =0.1 \Omega \\ \text{Inductive reactance/km/phase} & =0 \cdot 2 \Omega \\ \text{ Capacitive susceptance/km/phase} &=0.04 \times 10^{-4} ~\text{siemen} \end{aligned}\]
Determine (i) the sending end current (ii) sending end voltage (iii) sending end power factor and (iv) transmission efficiency when supplying a balanced load of \(10,000 ~\mathrm{kW}\) at \(66~ \mathrm{kV}, \mathrm{p}, f .0 \cdot 8\) lagging. Use nominal \(T\) method.
\[\begin{aligned} \text {Total resistance/phase}~R & =0.1 \times 100=10 ~\Omega \\ \text { Total reactance/phase } ~ X_{L} & =0.2 \times 100=20~ \Omega \\ \text { Capacitive susceptance }~ Y & =0.04 \times 10^{-4} \times 100=4 \times 10^{-4} \mathrm{S} \\ \text { Receiving end voltage/phase, } ~ V_{R} & =66,000 / \sqrt{3}=38105~ \mathrm{V} \\ \text{Load current}~I_{R}&=\frac{10,000 \times 10^{3}}{\sqrt{3} \times 66 \times 10^{3} \times 0.8}=109 ~\mathrm{A}\\ \cos \phi_{R} &=0.8 \\ \sin \phi_{R}&=0.6 \\ \text{Impedance per phase}~ \vec{Z} &=R+j X_{L}=10+j 20 \end{aligned}\]
Taking receiving end voltage as the reference phasor, we have,
\[\begin{aligned} \text{Receiving end voltage}~\overrightarrow{V_{R}} & =V_{R}+j 0=38,105 \mathrm{V}\\ \text{Load current}~\overrightarrow{I_{R}}&=I_{R}\left(\cos \phi_{R}-j \sin \phi_{R}\right)\\ &=109(0 \cdot 8-j 0 \cdot 6)\\ &=87 \cdot 2-j 65.4 \\ \text{Voltage across}~ C,~ \vec{V}_{1} & =\overrightarrow{V_{R}}+\overrightarrow{I_{R}} \cdot \vec{z} / 2\\ &=38,105+(87 \cdot 2-j 65-4)(5+j 10) \\ & =38,105+436+j 872-j 327+654\\ &=39,195+j 545 \end{aligned}\]
\[\begin{aligned} \text { Charging current, }~\overrightarrow{I_{C}} & =j Y \overrightarrow{V_{1}}=j 4 \times 10^{-4}(39,195+j 545)\\ &=-0 \cdot 218+j 15 \cdot 6\\ \text { Sending end current, }~ \quad \vec{I}_{S} &=\overrightarrow{I_{R}}+\overrightarrow{I_{C}}\\ &=(87 \cdot 2-j 65-4)+(-0 \cdot 218+j 15-6) \\ &=87 \cdot 0-j 49 \cdot 8=100 \angle-29^{\circ} 47^{\prime} \mathrm{A} \\ \therefore \quad \text { Sending end current } &=100 \mathrm{A} \end{aligned}\]
\[\begin{aligned} \text{Sending end voltage,} ~ \vec{V}_{S}&=\vec{V}_{1}+\overrightarrow{I_{S}} \vec{Z} / 2\\ &=(39,195+j 545)+\\ &(87 \cdot 0-j 49.8)(5+j 10) \\ &=39,195+j 545+434 \cdot 9+j 870-j 249+498 \\ &=40128+j 1170\\ &=40145 \angle 1^{\circ} 40^{\prime} \mathrm{V}\\ \text{sending end line voltage}~&=40145 \times \sqrt{3}=69533 \mathrm{V} \end{aligned}\]
\[\begin{aligned} \theta_{1} &=\text { angle between } \vec{V}_{R} \text { and } \vec{V}_{S}=1^{\circ} 40^{\prime} \\ \theta_{2} &=\text { angle between } \vec{V}_{R} \text { and } \vec{I}_{S}=29^{\circ} 47^{\prime} \\ \therefore \quad \phi_{S} &=\text { angle between } \vec{V}_{S} \text { and } \vec{I}_{S} \\ &=\theta_{1}+\theta_{2}=1^{\circ} 40^{\prime}+29^{\circ} 47^{\prime}=31^{\circ} 27^{\prime} \end{aligned}\]
\[\begin{aligned} \text { Sending end power factor, } ~\cos \phi_{\mathrm{S}}&=\cos 31^{\circ} 27^{\prime}=0.853 \mathrm{lag}\\ \text { Sending end power } &=3 V_{S} I_{S} \cos \phi_{S}\\ &=3 \times 40,145 \times 100 \times 0.853 \\ &=10273105 \mathrm{W}=10273 \cdot 105 \mathrm{kW} \\ \text { Power delivered } &=10,000 \mathrm{kW} \end{aligned}\] \[\text { Transmission efficiency }=\frac{10,000}{10273 \cdot 105} \times 100=97 \cdot 34 \%\]