Medium Transmission Lines
Demonstrative Video
VIDEO
Problem-1
\[\begin{aligned}
A = D & = 0.936 + j 0.16 = 0.936 \angle{0.98}\\
B & = 33.5 +j138 = 142\angle{76.4^\circ}~\Omega \\
C & = \left(-5.18+j914\right) \times 10^{-6}~\Omega
\end{aligned}\]
, 220 kV rated voltage, medium
length TL are: The generalized circuit constants of a
Solution-1
Power received by load = 50 MW
\[\begin{aligned}
& = \sqrt{3}V_rI_r\cos\phi \\
& = \dfrac{50\times 10^6}{\sqrt{3} \times 220 \times 10^3 \times
0.9}\\
& = 145.79~A
\end{aligned}\]
\[I_r
= 145.79\angle{25.84^\circ}\]
\(\cos\phi=0.9
\rightarrow \phi = 25.84^\circ\) Current at receiving end
\[\begin{aligned}
\mathbf{V_s} & =\mathbf{A} \mathbf{V}_{\mathbf{r}}+\mathbf{B
I}_{\mathbf{r}} \\
&=0.936 \angle 0.98^{\circ} \times(220 / \sqrt{3}) \times
10^{3} \\
&+14.2 \angle 76.4^{\circ} \times 145.79
\angle-25.84^{\circ} \\
&=133.246 \angle 7.77^{\circ} \mathrm{kV}
\end{aligned}\]
\[\begin{aligned}
\text { voltage } &=\sqrt{3} \times 133.246 \angle 7.77^{\circ}
\mathrm{kV} \\
&=230.78 \angle 7.77^{\circ} \mathrm{kV}
\end{aligned}\]
\[=230.78 \mathrm{kV}\]
Line to line sending end
Problem-2
\[\begin{array}{l}
A=D=0.94 \angle 10^{\circ} \\
B=130 \angle 730^{\circ} \\
C=0.001 \angle 900^{\circ}
\end{array}\]
\(\%\) \(240
~\mathrm{kV},\) line are: constant of a The
Solution-2
\[\begin{aligned}
&=\frac{\mathbf{V}_{\mathbf{R}(\mathrm{N} .
\mathbf{L})}-\mathbf{V}_{\mathrm{R}(\mathrm{F} .
\mathrm{L})}}{\mathrm{V}_{\mathrm{R}(\mathrm{F} . \mathrm{L})}} \times
100 \\
\mathrm{V}_{\mathrm{S}}
&=\mathrm{AV}_{\mathrm{r}}+\mathrm{BI}_{\mathrm{r}}
\end{aligned}\]
\[\begin{array}{l}
=\dfrac{255.3-220}{220} \times 100 \\
=16 \%
\end{array}\]
\(\therefore
\%\) \[\begin{array}{l}
\therefore V_{R(N . L)}=\dfrac{V_{S}}{A}=\dfrac{240 \times
10^{3}}{0.94} =255.3 \mathrm{kV}
\end{array}\]
\(\mathrm{I}_{\mathrm{R}}=0\) Voltage regulation
Problem-3
\[\begin{aligned}
A &=D=0.9 \angle 0^{\circ} \\
B &=200 \angle 90^{\circ} \Omega \\
C &=0.95 \times 10^{-3} \angle 90^{\circ} \mathrm{S}
\end{aligned}\]
The ABCD parameters of a 3-phase overhead transmission line are:
Solution-3
\[\begin{array}{l}
\mathrm{A}=\mathrm{D}=0.9 \angle 0^{\circ} \\
\mathrm{B}=200 \angle 90^{\circ}\\
\mathrm{C}=0.95 \times 10^{-3} \angle 90^{\circ}
\end{array}\]
Given:
\[\begin{array}{l}
{\left[\begin{array}{ll}
A^{1} & B^{1} \\
C^{1} & D^{1}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
Y & 1
\end{array}\right]}
\end{array}\]
Problem-4
\[\begin{array}{l}
A=D=0.95 \angle 2^{\circ} \\
B=60 \angle 70^{\circ} \Omega / \mathrm{ph} \\
C=0.6 \times 10^{-4} \angle 90^{\circ} \mathrm{S} / \mathrm{ph}
\end{array}\]
\(110 ~\mathrm{kV}\) 3-phase TL as
generalized circuit has constants as A
Solution-4
\[\begin{aligned}
\mathrm{V}_{\mathrm{rph}}&=\dfrac{110 \mathrm{kV}}{\sqrt{3}} \angle
0^{\circ} \\
\mathrm{V}_{\mathrm{sph}}&=\mathrm{A.V}_{\mathrm{rph}}\\
&=0.95 \times \frac{110}{\sqrt{3}} \angle 2^{\circ}
\end{aligned}\]
Problem-5
\[\begin{array}{l}
A=D=0.938 \angle 1.2^{\circ} \\
B=131.2 \angle 72.3^{\circ} \Omega / \mathrm{ph} \\
C=0.001 \angle 90^{\circ} \mathrm{S} / \mathrm{ph}
\end{array}\]
\(230 \mathrm{kV}\) transmission line are given as following: 3-phase The line constants of a
Solution-5
\[\mathrm{V_s}=\frac{230}{\sqrt{3}}=132.79
\mathrm{kV}\]
Sending-end phase voltage
Receiving end current will be zero, when the load is disconnected
\(I_{R}=0\)
\[\mathrm{V}_{\mathrm{s}}=\mathrm{AV}_{\mathrm{R}}+\mathrm{BI}_{\mathrm{R}}=\mathrm{AV}_{\mathrm{R}}+\mathrm{B}
\times 0\]
Sending-end phase voltage is given as
\[\mathrm{V}_{\mathrm{R}}=\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{A}}=\frac{132.79
\angle 0^{\circ}}{0.938 \angle 1.2^{\circ}}=141.5 \angle-12^{\circ}
\mathrm{kV}\]
Receiving-end voltage,
\[\begin{aligned}
\mathrm{I}_{C}=\mathrm{CV}_{\mathrm{R}} &=0.001 \angle
90^{\circ} \times 141.5 \times 10^{3} \angle-12^{\circ} \\
&=141.5 \angle 88.8^{\circ} \mathrm{A}
\end{aligned}\]
Line charging current
Problem-6
A 3-phase, 50-Hz overhead TL 100 km long has the following
constants:
\[\begin{aligned}
\text{Resistance/km/phase} & =0.1 \Omega \\
\text{Inductive reactance/km/phase} & =0 \cdot 2 \Omega \\
\text{ Capacitive susceptance/km/phase} &=0.04 \times
10^{-4} ~\text{siemen}
\end{aligned}\]
Determine (i) the sending end current (ii) sending end voltage (iii)
sending end power factor and (iv) transmission efficiency when supplying
a balanced load of \(10,000
~\mathrm{kW}\) at \(66~ \mathrm{kV},
\mathrm{p}, f .0 \cdot 8\) lagging. Use nominal \(T\) method.
Solution-6
\[\begin{aligned}
\text {Total resistance/phase}~R & =0.1 \times 100=10 ~\Omega \\
\text { Total reactance/phase } ~ X_{L} & =0.2 \times 100=20~
\Omega \\
\text { Capacitive susceptance }~ Y & =0.04 \times 10^{-4}
\times 100=4 \times 10^{-4} \mathrm{S} \\
\text { Receiving end voltage/phase, } ~ V_{R} & =66,000 /
\sqrt{3}=38105~ \mathrm{V} \\
\text{Load current}~I_{R}&=\frac{10,000 \times 10^{3}}{\sqrt{3}
\times 66 \times 10^{3} \times 0.8}=109 ~\mathrm{A}\\
\cos \phi_{R} &=0.8 \\
\sin \phi_{R}&=0.6 \\
\text{Impedance per phase}~ \vec{Z} &=R+j X_{L}=10+j 20
\end{aligned}\]
Taking receiving end voltage as the reference phasor, we have,
\[\begin{aligned}
\text{Receiving end voltage}~\overrightarrow{V_{R}} & =V_{R}+j
0=38,105 \mathrm{V}\\
\text{Load current}~\overrightarrow{I_{R}}&=I_{R}\left(\cos
\phi_{R}-j \sin \phi_{R}\right)\\
&=109(0 \cdot 8-j 0 \cdot 6)\\
&=87 \cdot 2-j 65.4 \\
\text{Voltage across}~ C,~ \vec{V}_{1} &
=\overrightarrow{V_{R}}+\overrightarrow{I_{R}} \cdot \vec{z} / 2\\
&=38,105+(87 \cdot 2-j 65-4)(5+j 10) \\
& =38,105+436+j 872-j 327+654\\
&=39,195+j 545
\end{aligned}\]
\[\begin{aligned}
\text { Charging current, }~\overrightarrow{I_{C}} & =j Y
\overrightarrow{V_{1}}=j 4 \times 10^{-4}(39,195+j 545)\\
&=-0 \cdot 218+j 15 \cdot 6\\
\text { Sending end current, }~ \quad \vec{I}_{S}
&=\overrightarrow{I_{R}}+\overrightarrow{I_{C}}\\
&=(87 \cdot 2-j 65-4)+(-0 \cdot 218+j 15-6) \\
&=87 \cdot 0-j 49 \cdot 8=100 \angle-29^{\circ} 47^{\prime}
\mathrm{A} \\
\therefore \quad \text { Sending end current } &=100 \mathrm{A}
\end{aligned}\]
\[\begin{aligned}
\text{Sending end voltage,} ~
\vec{V}_{S}&=\vec{V}_{1}+\overrightarrow{I_{S}} \vec{Z} / 2\\
&=(39,195+j 545)+\\
&(87 \cdot 0-j 49.8)(5+j 10) \\
&=39,195+j 545+434 \cdot 9+j 870-j 249+498 \\
&=40128+j 1170\\
&=40145 \angle 1^{\circ} 40^{\prime} \mathrm{V}\\
\text{sending end line voltage}~&=40145 \times \sqrt{3}=69533
\mathrm{V}
\end{aligned}\]
\[\begin{aligned}
\theta_{1} &=\text { angle between } \vec{V}_{R} \text { and }
\vec{V}_{S}=1^{\circ} 40^{\prime} \\
\theta_{2} &=\text { angle between } \vec{V}_{R} \text { and }
\vec{I}_{S}=29^{\circ} 47^{\prime} \\
\therefore \quad \phi_{S} &=\text { angle between } \vec{V}_{S}
\text { and } \vec{I}_{S} \\
&=\theta_{1}+\theta_{2}=1^{\circ} 40^{\prime}+29^{\circ}
47^{\prime}=31^{\circ} 27^{\prime}
\end{aligned}\]
\[\begin{aligned}
\text { Sending end power factor, } ~\cos \phi_{\mathrm{S}}&=\cos
31^{\circ} 27^{\prime}=0.853 \mathrm{lag}\\
\text { Sending end power } &=3 V_{S} I_{S} \cos \phi_{S}\\
&=3 \times 40,145 \times 100 \times 0.853 \\
&=10273105 \mathrm{W}=10273 \cdot 105 \mathrm{kW} \\
\text { Power delivered } &=10,000 \mathrm{kW}
\end{aligned}\]