Gauss Seidel Load Flow Analysis


Important Formulae

\[\begin{aligned} P_i & = \sum_{k=1}^{n} |Y_{ik} V_i V_k| \cos(\theta_{ik} + \delta_k - \delta_i) \\ Q_i & = -\sum_{k=1}^{n} |Y_{ik}V_i V_k| \sin(\theta_{ik} + \delta_k - \delta_i) \end{aligned}\]
\[\begin{aligned} \Delta P_i & = P_{i,\text{inj}} - P_{i,\text{calc}} \\ &= P_{Gi} - P_{Li} - P_{i,\text{calc}}\\ \Delta Q_i &= Q_{i,\text{inj}} - Q_{i,\text{calc}} \\ &= Q_{Gi} - Q_{Li} - Q_{i,\text{calc}} \end{aligned}\]
\[\begin{aligned} P_{i,inj}-jQ_{i,inj} & =V_{i}^{*}\sum_{k=1}^{n}Y_{ik}V_{k}\\ &=V_{i}^{*}\left[Y_{i1}V_{1}+Y_{i2}V_{2}+\cdots+Y_{ii}V_{i}+\cdots+Y_{in}V_{n}\right]V_{i}\\ &\\ V_i&=\dfrac{1}{Y_{ii}}\left[\dfrac{P_{i,inj}-jQ_{i,inj}}{V_{i}^{*}}-Y_{i1}V_{1}-Y_{i2}V_{2}-\cdots-Y_{in}V_{n}\right]\\ & \\ P_{\mathrm{ik}} & =-\left|V_{\mathrm{i}}\right|^{2}\left|Y_{\mathrm{ik}}\right|\cos\theta_{\mathrm{ik}}+\left|V_{\mathrm{i}}\right|\left|V_{\mathrm{k}}\right|\left|Y_{\mathrm{ik}}\right|\cos(\theta_{\mathrm{ik}}-\delta_{\mathrm{i}}+\delta_{\mathrm{k}})\\ Q_{\mathrm{ik}}&=\hspace{1em}\left|V_{\mathrm{i}}\right|^{2}\left|Y_{\mathrm{ik}}\right|\sin\theta_{\mathrm{ik}}-\left|V_{\mathrm{i}}\right|\left|V_{\mathrm{k}}\right|\left|Y_{\mathrm{ik}}\right|\sin(\theta_{\mathrm{ik}}-\delta_{\mathrm{i}}+\delta_{\mathrm{k}})\\ &\\ V_{i,acc}^{(k)}&=V_{i,acc}^{(k-1)}+\lambda\left(V_{i}^{(k)}-V_{i,acc}^{(k-1)}\right)\ \end{aligned}\]

Gauss-Seidel Load Flow - Algorithm

  1. Accelerate the voltage to improve convergence.

    \[V_{i,\text{acc}}^{k+1} = V_i^k + \alpha (V_i^{k+1} - V_i^k)\]
  2. Check for convergence \(|V_{i,\text{acc}}^{k+1} - V_i^k| \leq \epsilon\).

  3. If yes, stop. Otherwise go to step 3.

  4. Find the line flows, losses and the slack bus power.


Problem-1

image
  1. Using the Gauss-Seidel method, determine the phasor values of the voltage at buses 2 and 3. (Perform only two iterations).

  2. Find the slack bus real and reactive power after the second iteration.

  3. Determine the line flows and line losses after the second iteration. Neglect line charging admittance.


Solution

Step-1: Initial computations

Step-2: Formation of \(\mathbf{Y}_{\text{BUS}}\) matrix

\[\begin{aligned} y_{12} &= y_{21} = \dfrac{1}{Z_{12}} = \dfrac{1}{0.02 + j0.04} = (10 - j20) \\ y_{13} &= y_{31} = \dfrac{1}{Z_{13}} = \dfrac{1}{0.01 + j0.03} = (10 - j30) \\ y_{23} &= y_{32} = \dfrac{1}{Z_{23}} = \dfrac{1}{0.0125 + j0.025} = (16 - j32)\\ & \\ \text{Now,}~Y_{11} & = y_{12} + y_{13} + y_{10}\\ & \\ &\text{Charging admittance is neglected, i.e.,}~ y_{10} = 0.0 \\ Y_{11} &= y_{12} + y_{13} = (10 - j20) + (10 - j30) = (20 - j50) \\ Y_{22} &= y_{21} + y_{23} = y_{12} + y_{23} = (26 - j52) \\ Y_{33} &= y_{13} + y_{23} = (26 - j62) \end{aligned}\]
\[\begin{aligned} Y_{11} &= 53.85 \angle -68.2^\circ \\ Y_{22} &= 58.13 \angle -63.4^\circ \\ Y_{33} &= 67.23 \angle -67.2^\circ \\ &\\ Y_{12} &=-y_{12}= Y_{21} = -(10 - j20) = 22.36 \angle 116.6^\circ \\ Y_{13} &= Y_{31} = - y_{13} = - (10 - j30) = 3.162 \angle 108.4^\circ \\ Y_{23} &= Y_{32} = - y_{23} = - (16 - j32) = 35.77 \angle 116.6^\circ \end{aligned}\]
\[Y_{\text{BUS}} = \begin{bmatrix} \begin{array}{c|c|c} 53.85\angle{-68.2^\circ} & 22.36\angle{116.6^\circ} & 31.62\angle{108.4^\circ} \\ \hline 22.36\angle{116.6^\circ} & 58.13\angle{-63.4^\circ} & 35.77\angle{116.6^\circ} \\ \hline 31.62\angle{108.4^\circ} & 35.77\angle{116.6^\circ} & 67.23\angle{-67.2^\circ} \end{array} \end{bmatrix}\]

Step-3: Iterative Computation

\[\begin{aligned} V_2^{(p+1)} &= \dfrac{1}{Y_{22}} \left[ \dfrac{P_2 - jQ_2}{(V_2^{(p)})^*} - Y_{21}V_1 - Y_{23}V_3^{(p)} \right] \\ V_3^{(p+1)} &= \dfrac{1}{Y_{33}} \left[ \dfrac{P_3 - jQ_3}{(V_3^{(p)})^*} - Y_{31}V_1 - Y_{32}V_2^{(p+1)} \right] \\ \text{Slacks bus voltage}~ V_1 &= (1.05 + j0.0) \\ \text{Starting voltage}~V_2^{(0)} &= (1 + j0); \quad V_3^{(0)} = (1 + j0) \\ \end{aligned}\]
\[\begin{aligned} \dfrac{P_2 - jQ_2}{Y_{22}} &= \dfrac{-2.556 + j1.102}{58.13 \angle -63.4^\circ} = 0.0478\angle{220.1^\circ} \\[5pt] \dfrac{Y_{21}}{Y_{22}} &= \dfrac{22.36 \angle 116.6^\circ}{58.13 \angle -63.4^\circ} = 0.3846\angle{180^\circ} = -0.3846 \\ \dfrac{Y_{23}}{Y_{22}} &= \dfrac{35.77 \angle 116.6^\circ}{58.13 \angle -63.4^\circ} = 0.6153\angle{180^\circ} = -0.6153 \\[5pt] V_2^{(p+1)} &= \left[ \dfrac{0.0478\angle{220.1^\circ}}{(V_2^{(p)})^*} \right] + 0.3846 \, V_1 + 0.6153 \, V_3^{(p)} \end{aligned}\]
\[\begin{aligned} \dfrac{P_3 - jQ_3}{Y_{33}} &= \dfrac{-1.386 + j0.452}{67.23 \angle -67.2^\circ} = 0.0217\angle{229.2^\circ} \\[5pt] \dfrac{Y_{31}}{Y_{33}} &= \dfrac{31.62 \angle 108.4^\circ}{67.23 \angle -67.2^\circ} = 0.47\angle{175.6^\circ} \\ \dfrac{Y_{32}}{Y_{33}} &= \dfrac{35.77 \angle 116.6^\circ}{67.23 \angle -67.2^\circ} = 0.532\angle{183.8^\circ} \\[5pt] V_3^{(p+1)} &= \left[ \dfrac{0.0217\angle{229.2^\circ}}{(V_2^{(p)})^*} \right] - 0.47\angle{175.6^\circ} V_1 - 0.532\angle{183.8^\circ} V_2^{(p+1)} \end{aligned}\]
\[\begin{aligned} V_2^{(1)} &= \dfrac{0.0478 \angle 220.1^\circ}{(1 + j0)^*} + 0.3846 \times 1.05 + 0.6153(1 + j0) \\ &= 0.98305 \angle -1.8^\circ \\ V_3^{(1)} &= \dfrac{0.0217 \angle 229.2^\circ}{(1 + j0)^*} - 0.47 \angle 175.6^\circ \times 1.05 - 0.532 \angle 183.8^\circ \times 0.98305 \angle -1.8^\circ \\ &= 1.0011 \angle -2.06^\circ \end{aligned}\]

After first iteration:

\[\begin{aligned} V_2^{(1)} &= 0.98305 \angle -1.8^\circ \\ V_3^{(1)} &= 1.0011 \angle -2.06^\circ \end{aligned}\]
\[\begin{aligned} V_2^{(2)} &= \dfrac{0.0478 \angle 220.1^\circ}{(0.98305 \angle -1.8^\circ)^*} + 0.3846 \times 1.05 + 0.6153 \times 1.0011 \angle -2.06^\circ \\ &= 0.98265 \angle -3.048^\circ \\ V_3^{(2)} &= \dfrac{0.0217 \angle 229.2^\circ}{(1.0011 \angle -2.06^\circ)^*} - 0.47 \angle 175.6^\circ \times 1.05 - 0.532 \times 183.8^\circ \times 0.98265 \angle -3.048^\circ \\ &= 1.00099 \angle -2.68^\circ \end{aligned}\]

After 2nd iteration:

\[\begin{aligned} V_2^{(2)} &= 0.98265 \angle -3.048^\circ \\ V_3^{(2)} &= 1.00099 \angle -2.68^\circ \end{aligned}\]

Step-4: Computation of slack bus power after 2nd iteration.

\[\begin{aligned} P_1 &= \sum_{k=1}^{3} |V_1| |V_k| |Y_{1k}| \cos(\theta_{1k} - \delta_1 + \delta_k) \\ &= |V_1|^2 |Y_{11}| \cos \theta_{11} + |V_1| |V_2| |Y_{12}| \cos(\theta_{12} - \delta_1 + \delta_2) \\ &\quad + |V_1| |V_3| |Y_{13}| \cos(\theta_{13} - \delta_1 + \delta_3) \\[5pt] |V_1| &= 1.05, \, \delta_1 = 0^\circ, \quad \, |V_2| = 0.98265, \, \delta_2 = -3.048^\circ, \\ \, |V_3| &= 1.00099, \, \delta_3 = -2.68^\circ \\ |Y_{11}| &= 53.85, \, \theta_{11} = -68.2^\circ \quad |Y_{12}| = 22.36, \, \theta_{12} = 116.56^\circ \\ |Y_{13}| &= 31.62, \, \theta_{13} = 108.4^\circ \\[5pt] P_1 &= (1.05)^2 \times 53.85 \times \cos(-68.2^\circ) \\ &+ 1.05 \times 0.98265 \times 22.36 \times \cos(116.56^\circ - 3.048^\circ) \\ &+ 1.05 \times 1.00099 \times 31.62 \times \cos(108.4^\circ - 2.68^\circ) \\ &= 3.84 \, \text{pu} \\ &= 3.84 \times 100 = 384 \, \text{MW} \end{aligned}\]
\[\begin{aligned} Q_1 &= - \sum_{k=1}^{3} |V_i| |V_k| |Y_{ik}| \sin(\theta_{ik} - \delta_i + \delta_k) \\ &= - |V_1|^2 |Y_{11}| \sin \theta_{11} - |V_1| |V_2| |Y_{12}| \sin(\theta_{12} - \delta_{1} + \delta_{2}) \\ &= -|V_1| |V_3| \sin(\theta_{13} - \delta_{1} + \delta_{3}) \\ &= - |1.05|^2 \times 53.85 \times \sin(-68.29^\circ) \nonumber \\ &\quad - 1.05 \times 0.98265 \times 22.36 \sin(116.56^\circ - 3.048^\circ) \nonumber \\ &\quad - 1.05 \times 1.00099 \times 31.62 \sin(108.4^\circ - 2.68^\circ) \\ &= 55.1238 - 21.1552 - 31.99\\ &= 1.9786 \text{ pu}\\ & = 197.86 \text{ MW} \end{aligned}\]

Step-5: Calculation of line flows and line losses.

\[\begin{aligned} P_{ik} & = -|V_{i}|^{2} |Y_{ik}| \cos \theta_{ik} + |V_{i}| |V_{k}| |Y_{ik}| \cos(\theta_{ik} - \delta_{i} + \delta_{k}) \\ P_{12} & = -|V_{1}|^{2} |Y_{12}| \cos \theta_{12} + |V_{1}| |V_{2}| |Y_{12}| \cos(\theta_{12} - \delta_{1} + \delta_{2}) \\ & = -(-1.05)^{2} \times 22.36 \cos (116.56^{\circ}) \\ &+ 1.05 \times 0.98265 \times 22.36 \cos(116.56^{\circ} - 0 - 3.048^{\circ}) \\ & = 1.8189 \text{ pu }\\ P_{13} & = -|V_{1}|^{2} |Y_{13}| \cos(\theta_{13}) + |V_{1}| |V_{3}| |Y_{13}| \cos(\theta_{13} - \delta_{1} + \delta_{3}) \\ & = -(-1.05)^{2} \times 31.62 \cos (108.4^{\circ}) \\ &+ 1.05 \times 1.00099 \times 31.62 \cos(108.4^{\circ} - 0 - 2.68^{\circ}) \\ & = 2.0 \text{ pu} \\ P_{23} & = -|V_{2}|^{2} |Y_{23}| \cos \theta_{23} + |V_{2}| |V_{3}| |Y_{23}| \cos(\theta_{23} - \delta_{2} + \delta_{3}) \\ & = -(-0.98265)^{2} \times 35.77 \cos (116.6^{\circ}) \\ &+ 0.98265 \times 1.00099 \times 35.77 \cos(116.6^{\circ} + 3.048^{\circ} - 2.68^{\circ}) \\ & = -0.4903 \text{ pu} \end{aligned}\]
\[\begin{aligned} P_{21} &= -|V_{2}|^2 |Y_{12}| \cos \theta_{12} + |V_{1}| |V_{2}| |Y_{12}| \cos (\theta_{12} - \delta_{2} + \delta_{1}) \\ &= - (0.98265)^2 \times 22.36 \cos(116.56^{\circ}) \nonumber \\ &\quad + 1.05 \times 0.98265 \times 22.36 \cos(116.56^{\circ} + 3.048^{\circ} + 0^{\circ}) \\ &= -1.744 \text{ pu} \\ P_{31} &= -|V_{3}|^2 |Y_{13}| \cos \theta_{13} + |V_{1}| |V_{3}| |Y_{13}| \cos (\theta_{13} - \delta_{3} + \delta_{1}) \\ &= - (1.00099)^2 \times 31.62 \cos(108.4^{\circ}) \nonumber \\ &\quad + 1.05 \times 1.00099 \times 31.62 \cos(108.4^{\circ} + 2.68^{\circ} + 0^{\circ}) \\ &= -1.95 \text{ pu} \\ P_{32} &= -|V_{3}|^2 |Y_{23}| \cos \theta_{23} + |V_{2}| |V_{3}| |Y_{23}| \cos (\theta_{23} - \delta_{3} + \delta_{2}) \\ &= - (1.00099)^2 \times 35.77 \cos(116.6^{\circ}) \nonumber \\ &\quad + 1.00099 \times 0.98265 \times 35.77 \cos(116.6^{\circ} + 2.68^{\circ} - 3.048^{\circ}) \\ &= 0.496 \text{ pu} \end{aligned}\]

Real power losses in lines

\[\begin{aligned} P_{\text{Loss}12} &= P_{12} + P_{21} = 1.8189 - 1.744 = 0.0749 = 7.49 \text{ MW}. \\ P_{\text{Loss}13} &= P_{13} + P_{31} = 2 - 1.95 = 0.05 \text{ pu } = 5 \text{ MW}. \\ P_{\text{Loss}23} &= P_{23} + P_{32} = -0.4903 + 0.496 = 0.0057 \text{ pu } = 0.57 \text{ MW}. \end{aligned}\]
\[\begin{aligned} Q_{12} &= | V_{1} |^{2} | Y_{12} | \sin \theta_{12} - | V_{1} | | V_{2} | | Y_{21} | \sin (\theta_{12} - \delta_{1} + \delta_{2}) \\ &= (1.05)^{2} \times 22.36 \times \sin(116.56^\circ) \\ &- 1.05 \times 0.98265 \times 22.36 \times \sin(116.56^\circ - 3.048^\circ) \\ &= 0.8948 \, \text{pu} \\[2pt] Q_{13} &= (1.05)^{2} \times 31.62 \times \sin(108.4^\circ) \\ &- 1.05 \times 1.00099 \times 31.62 \times \sin(108.4^\circ - 2.68^\circ) \\ &= 1.088 \, \text{pu} \\[2pt] Q_{23} &= (0.98265)^{2} \times 35.77 \times \sin(116.6^\circ) \\ &- 0.98265 \times 1.00099 \times 35.77 \times \sin(116.6^\circ + 3.048^\circ - 2.68^\circ) \\ &= -0.4746 ~\text{pu} \\ \end{aligned}\]
\[\begin{aligned} Q_{21} &= (0.98265)^{2} \times 22.36 \times \sin(116.56^\circ) \\ &- 1.05 \times 0.98265 \times 22.36 \times \sin(116.56^\circ + 3.048^\circ) \\ & = -0.746 \, \text{pu} \\[2pt] Q_{31} &= (1.00099)^{2} \times 31.62 \times \sin(108.4^\circ) \\ & - 1.05 \times 1.00099 \times 31.62 \times \sin(108.4^\circ + 2.68^\circ) \\ & = -0.9469 \, \text{pu} \\[2pt] Q_{32} &= (1.00099)^{2} \times 35.77 \times \sin(116.6^\circ) \\ &- 1.00099 \times 0.98265 \times 35.77 \times \sin(116.6^\circ + 2.68^\circ - 3.048^\circ) \\ & = 0.4866 \, \text{pu} \end{aligned}\]

Reactive power loss in lines.

\[\begin{aligned} & Q_{\text{Loss}\,12} = Q_{12} + Q_{21} = 0.8948 - 0.746 = 0.1488\, \text{pu} = 14.88\, \text{MVAR} \\[1em] & Q_{\text{Loss}\,13} = Q_{13} + Q_{31} = 1.088 - 0.9469 = 0.1411\, \text{pu} = 14.11\, \text{MVAR} \\[1em] & Q_{\text{Loss}\,23} = Q_{23} + Q_{32} = -0.4746 + 0.4866 = 0.012\, \text{pu} = 1.2\, \text{MVAR} \end{aligned}\]

Problem-2

The following is the system data for a load flow solution:

The line admittances:

Bus code Admittance
1–2 \(2-j8.0\)
1–3 \(1-j4.0\)
2–3 \(0.666-j2.664\)
2–4 \(1-j4.0\)
3–4 \(2-j8.0\)

The schedule of active and reactive powers:

Bus code P (pu) Q (pu) V (pu) Remarks
1 \(1.06\angle 0^\circ\) Slack
2 \(+0.5\) \(+0.2\) \(1.0 + j0.0\) PQ
3 \(+0.4\) \(+0.3\) \(1.0 + j0.0\) PQ
4 \(+0.3\) \(+0.1\) \(1.0 + j0.0\) PQ

Determine the voltages at the end of first iteration using Gauss-Seidel method. Take acceleration factor \(\alpha = 1.6\).


Solution

\[\begin{aligned} V_{3}^{1} &= \dfrac{1}{Y_{33}} \left[ \dfrac{P_{3}-jQ_{3}}{V_{3}^{*}} - Y_{31}V_{1} - Y_{32}V_{2}^{1} - Y_{34}V_{4}^{0} \right] \\ &= \dfrac{1}{(3.666 - j14.664)} \left[ \dfrac{-0.4 + j0.3}{1 - j0.0} - (-1 + j4.0)1.06 \right. \\ &\quad \left. - (-0.666 + j2.664)(1.01899 - j0.046208) - (-2 + j8)(1 + j0.0) \right] \\ &= 0.994119 - j0.029248 \\ V^{1}_{3\text{acc}}&= (1 + j0.0) + 1.6[0.994119 - j0.029248 - 1 - j0.0] \\ &= 0.99059 - j0.0467968 \quad \text{Ans.} \end{aligned}\]
\[\begin{aligned} V_{4}^{1} &= \dfrac{1}{Y_{44}} \left[ \dfrac{P_4 - jQ_4}{V_{4}^{0*}} - Y_{42} V_{2}^{1} - Y_{43} V_{3}^{1} \right] \\ &= \dfrac{1}{(3 - j12)} \left[ \dfrac{-0.3 + j0.1}{1 - j0.0} - (-1 + j4.0)(1.01899 - j0.046208) \right. \\ & \qquad \left. -(-2 + j8)(0.99059 - j0.0467968) \right] \\ &= 0.9716032 - j0.064684 \\ V^{1}_{4\text{acc}} &= 1.0 + j0.0 + 1.6 \left[ 0.9716032 - j0.064684 - 1 - j0.0 \right] \\ &= 0.954565 - j0.1034944 \quad \text{Ans.} \end{aligned}\]

Problem-3

If bus 2 is taken as a generator bus with \(|V_2| = 1.04\) and reactive power constraint is

\[0.1 \leq Q_2 \leq 1.0\]

Determine the voltages starting with a flat voltage profile and assuming accelerating factor as 1.0.


Solution

\[\begin{aligned} V_3^1 &= \dfrac{1}{Y_{33}} \left[ \dfrac{P_3 - jQ_3}{V_3^*} - Y_{31} V_1 - Y_{32} V_2^1 - Y_{34} V_4^0 \right] \\ &= \dfrac{1}{3.666 - j14.664} \bigg[ \dfrac{-0.4 + j0.3}{1 - j0.0} - (-1 + j4)1.06 \\ &\quad - (-0.666 + j2.664)(1.0395985 + j0.02891158) \\ &\quad - (-2 + j8)(1 + j0.0) \bigg] \\ &= 0.9978866 - j0.015607057 \\[2em] \text{Similarly, } V_4^1 &\text{ can be obtained and it will be found to be} \\ V_4^1 &= 0.998065 - j0.022336 \quad \text{Ans.} \end{aligned}\]

Problem-4

\[0.2 \leq Q_2 \leq 1.0\]
If the reactive power constraint on generator 2 is

Solution

\[\begin{aligned} V_2^1 &= \dfrac{1}{Y_{22}} \left( \dfrac{(P_2 - jQ_2)}{V_2^*} - Y_{21} V_1 - Y_{23} V_3^0 - Y_{24} V_4^0 \right) \\ &= \dfrac{1}{3.666 - j14.664} \Bigg[ 0.5 - j0.2 - (-2 + j8.0) \times 106 \\ &\quad - (-0.666 + j0.2664) - (-1 + j4.0) \Bigg] \\ &= 1.098221 + j0.030105662 \end{aligned}\]
\[\begin{aligned} V_{3}^{1} &= \dfrac{1}{Y_{33}}\left[\dfrac{P_{3}-jQ_{3}}{V_{3}^{0}} - Y_{31}V_{1} - Y_{32}V_{2}^{1} - Y_{34}V_{4}^{0}\right] \\ &= \dfrac{1}{3.666-j14.664}\bigg[\dfrac{-0.4+j0.3}{1-j0.0} - (-1+j4)1.06\\ &\qquad - (-0.666+j2.664)(1.098221 + j0.030105662) \\ &\qquad - (-2+j8.0)(1+j0.0)\bigg]\\ &=1.0085 - j 0.0154 \end{aligned}\]

Similarly, \(V_4^1\) can be calculated


Problem-5

image

Line Data:

Bus Code R (p.u.) X (p.u.) \(\dfrac{Y}{2}\) (p.u.)
1-2 0 \(j0.1\) \(j0.01\)
1-3 0 \(j0.1\) \(j0.01\)
2-3 0 \(j0.1\) \(j0.01\)

Bus data

Bus \(P_g\) \(Q_g\) \(P_d\) \(Q_d\) \(|V|\) \(\delta\) Type
1 1 0 Slack
2 0.6661 1.05 PV
3 2.8653 1.2244 PQ

Assume a flat voltage start, determine the voltage at the end of first iteration using G-S method. \(0.2 \leq Q_2 \leq 2\). Take \(\alpha = 1.6\).


Solution

1. Form \(Y_{bus}\) matrix.

\[Y_{bus} = \begin{bmatrix} \dfrac{1}{j0.1} + \dfrac{1}{j0.1} + j0.01 + j0.01 & -\dfrac{1}{j0.1} & -\dfrac{1}{j0.1} \\ -\dfrac{1}{j0.1} & \dfrac{1}{j0.1} + \dfrac{1}{j0.1} + j0.01 + j0.01 & -\dfrac{1}{j0.1} \\ -\dfrac{1}{j0.1} & -\dfrac{1}{j0.1} & \dfrac{1}{j0.1} + \dfrac{1}{j0.1} + j0.01 + j0.01 \end{bmatrix}\]
\[Y_{bus} = \begin{bmatrix} -j19.98 & j10 & j10 \\ j10 & -j19.98 & j10 \\ j10 & j10 & -j19.98 \end{bmatrix}\]

2. Start the first iteration \(k = 0\).

\[\begin{aligned} V_2^1 &= \dfrac{1}{Y_{22}} \left( \dfrac{P_{2,inj} - jQ_2^1}{\left(V_2^0\right)^*} - Y_{21} V_1^1 - Y_{23} V_3^0 \right) \\ &= \dfrac{1}{-j19.98} \left( \dfrac{0.6661 - j1.028}{(1.05 + j0)^*} - j10 \times (1 + j0) - j10 \times (1 + j0) \right) \\ &= 1.0500 + j0.0318 \end{aligned}\]

Since \(|V_2|\) is fixed,

\[\begin{aligned} V_{2,corr}^1 &= |V_2| \dfrac{V_2^1}{|V_2^1|} = 1.05 \times \dfrac{1.0500 + j0.0318}{1.0505} \\ &= 1.0495 + j0.0317 \\ &= 1.05\angle1.732^\circ \end{aligned}\]

Bus-3 is a \(PQ\) bus.

\[\begin{aligned} V_3^1 &= \dfrac{1}{Y_{33}} \left( \dfrac{P_{3,inj} - jQ_{3,inj}}{(V_3^0)^*} - Y_{31} V_1^1 - Y_{32} V_2^1 \right) \\ &= \dfrac{1}{-j19.98} \bigg\{ \dfrac{-2.8653 + j1.2244}{(1+j0)^*} \\ &\quad - j10 \times (1+j0) - j10 \times (1.0495 + j0.0317) \bigg\} \\ &= 0.9645 - j0.1275 \\[1em] V_{3,acc}^1 &= V_3^0 + \alpha (V_3^1 - V_3^0) \\ &= (1+j0) + 1.6 \times (0.9645 - j0.1275 - 1-j0) \\ &= 0.9432 - j0.2040 \end{aligned}\]

Problem-6

image
The single-line diagram of a three-bus power system is shown below, with generation located at bus 1. The scheduled loads at buses 2 and 3 are indicated on the diagram. The line impedances are provided in per unit on a 100 MVA base, and the line charging susceptances are assumed to be negligible.
  1. Using the Gauss-Seidel method, calculate the phasor values of the voltage at the load buses 2 and 3 (P-Q buses) to four decimal places.

  2. Determine the real and reactive power at the slack bus.

  3. Compute the line flows and line losses.

  4. Construct a power flow diagram illustrating the direction of line flow.


Solution

\[\begin{aligned} V_3^{(1)} &= \dfrac{\dfrac{P_3^{sch} - jQ_3^{sch}}{V_3^{*(0)}} + y_{13}V_1 + y_{23}V_2^{(1)} }{y_{13}+y_{23}}\\[1em] &= \dfrac{\dfrac{-1.386 + j0.452}{1.0 - j0} + (10 - j30)(1.05 + j0) + (16 - j32)(0.9825 - j0.0310)}{(26-j62)} \\ &= 1.0011 - j0.0353 \end{aligned}\]

For the \(2^\text{nd}\) iteration,

\[\begin{aligned} V_2^{(2)} &= \dfrac{\dfrac{-2.566 + j1.102}{0.9825 + j0.0310} + (10 - j20)(1.05 + j0) + (16 - j32)(1.0011 - j0.0353)}{(26 - j52)} \\ &= 0.9816 - j0.0520 \\ V_3^{(2)} &= \dfrac{\dfrac{-1.386 + j0.452}{1.0011 + j0.0353} + (10 - j30)(1.05 + j0) + (16 - j32)(0.9816 - j0.052)}{(26 - j62)} \\ &= 1.0008 - j0.0459 \end{aligned}\]

The process is continued and a solution is converged with an accuracy of \(5 \times 10^{-5}\) per unit in seven iterations as given below.

\[\begin{aligned} V_2^{(3)} & = 0.9808 - j0.0578 \qquad V_3^{(3)} = 1.0004 - j0.0488 \\ V_2^{(4)} & = 0.9803 - j0.0594 \qquad V_3^{(4)} = 1.0002 - j0.0497 \\ V_2^{(5)} & = 0.9801 - j0.0598 \qquad V_3^{(5)} = 1.0001 - j0.0499 \\ V_2^{(6)} & = 0.9801 - j0.0599 \qquad V_3^{(6)} = 1.0000 - j0.0500 \\ V_2^{(7)} & = 0.9800 - j0.0600 \qquad V_3^{(7)} = 1.0000 - j0.0500 \end{aligned}\]

The final solution is

\[V_2 = 0.9800 - j0.0600 = 0.98183 \angle{-3.5035} \, \text{pu}\]
\[\begin{aligned} P_1 - jQ_1 &= V_1^*\bigg[V_1(y_{12} + y_{13}) - (y_{12}V_2 + y_{13}V_3)\bigg] \\ &= 1.05\bigg[1.05(20 - j50) - (10 - j20)(0.98 - j0.06) \\ &- (10 - j30)(1.0 - j0.05)\bigg] \\ &= 4.095 - j1.890 \end{aligned}\]
b)
\[P_1 = 4.095 \, \text{pu} = 409.5 \, \text{MW} \quad \text{and} \quad Q_1 = 1.890 \, \text{pu} = 189.0 \, \text{MVAR}.\]
or the slack bus real and reactive powers are
\[\begin{aligned} I_{12} &= y_{12}(V_1 - V_2) \\ &= (10 - j20)\big[(1.05 + j0) - (0.98 - j0.06)\big] = 1.9 - j0.8 \\ I_{21} &= -I_{12} = -1.9 + j0.8 \\ I_{13} &= y_{13}(V_1 - V_3) \\ &= (10 - j30)\big[(1.05 + j0) - (1.0 - j0.05)\big] = 2.0 - j1.0 \\ I_{31} &= -I_{13} = -2.0 + j1.0 \\ I_{23} &= y_{23}(V_2 - V_3) \\ &= (16 - j32)\big[(0.98 - j0.06) - (1 - j0.05)\big] = -0.64 + j0.48\\ I_{32} &= -I_{23} = 0.64 - j0.48 \end{aligned}\]
c)

The line flows are

\[\begin{aligned} S_{12} &= V_1 I_{12}^* = (1.05 + j0.0)(1.9 + j0.8) = 1.995 + j0.84 \, \text{pu} \\ &= \mathrm{199.5~MW} + j\mathrm{84.0~MVAR} \\ S_{21} &= V_2 I_{21}^* = (0.98 - j0.06)(-1.9 - j0.8) = -1.91 - j0.67 \, \text{pu} \\ &= \mathrm{-191.0~MW} - j\mathrm{67.0~MVAR} \\ S_{13} &= V_1 I_{13}^* = (1.05 + j0.0)(2.0 + j1.0) = 2.1 + j1.05 \, \text{pu} \\ &= \mathrm{210.0~MW} + j\mathrm{105.0~MVAR} \\ S_{31} &= V_3 I_{31}^* = (1.0 - j0.05)(-2.0 - j1.0) = -2.05 - j0.90 \, \text{pu} \\ &= \mathrm{-205.0~MW} - j\mathrm{90.0~MVAR} \\ S_{23} &= V_2 I_{23}^* = (0.98 - j0.06)(-0.656 + j0.48) = -0.656 - j0.432 \, \text{pu} \\ &= \mathrm{-65.6~MW} - j\mathrm{43.2~MVAR} \\ S_{32} &= V_3 I_{32}^* = (1.0 - j0.05)(0.64 + j0.48) = 0.664 + j0.448 \, \text{pu} \\ &= \mathrm{66.4~MW} + j\mathrm{44.8~MVAR} \end{aligned}\]

The line losses are

\[\begin{aligned} S_{L\,12} &= S_{12} + S_{21} = \mathrm{8.5~MW} + j\mathrm{17.0~MVAR} \\ S_{L\,13} &= S_{13} + S_{31} = \mathrm{5.0~MW} + j\mathrm{15.0~MVAR} \\ S_{L\,23} &= S_{23} + S_{32} = \mathrm{0.8~MW} + j\mathrm{1.60~MVAR} \end{aligned}\]

d) The power flow diagram :

image