Admittance Bus Solved Problems

Demonstrative Video


Revision of Important Concept

The bus admittance matrix can be formed by inspection using the following guidelines.

  1. The diagonal element \(Y_{i j}\) is given by sum of all the admittances connected to node-j.

  2. The off-diagonal element \(Y_{j k}\) is given by negative of the sum of all the admittances connected between node-j and node-k.

Problem-1

For the network shown in the Figure,

image

All values are marked in p.u.

Solution-1

image

\[ \mathbf{Y}_{\text {bus }}=\left[\begin{array}{cccc} -(\mathrm{j} 0.5+\mathrm{j} 0.4+\mathrm{j} 0.4) & \mathrm{j} 0.5 & \mathrm{j} 0.4 & \mathrm{j} 0.4 \\ \mathrm{j} 0.5 & -(\mathrm{j} 0.5+\mathrm{j} 0.6) & \mathrm{j} 0.6 & 0 \\ \mathrm{j} 0.4 & \mathrm{j} 0.6 & -(\mathrm{j} 0.6+\mathrm{j} 0.5+\mathrm{j} 0.4) & \mathrm{j} 0.5 \\ \mathrm{j} 0.4 & 0 & \mathrm{j} 0.5 & -(\mathrm{j} 0.5+\mathrm{j} 0.4) \end{array}\right] \]

\[\mathbf{Y}_{\text {bus }}=\left[\begin{array}{cccc} -\mathrm{j} 1.3 & \mathrm{j} 0.5 & \mathrm{j} 0.4 & \mathrm{j} 0.4 \\ \mathrm{j} 0.5 & -\mathrm{j} 1.1 & \mathrm{j} 0.6 & 0 \\ \mathrm{j} 0.4 & \mathrm{j} 0.6 & -\mathrm{j} 1.5 & \mathrm{j} 0.5 \\ \mathrm{j} 0.4 & 0 & \mathrm{j} 0.5 & -\mathrm{j} 0.9 \end{array}\right]\]

The reduced bus admittance matrix after eliminating \(4^{\text {th }}\) row is shown below. \[\mathbf{Y}_{\text {bus }}=\left[\begin{array}{ccc} -\mathrm{j} 1.12 & \mathrm{j} 0.5 & \mathrm{j} 0.622 \\ \mathrm{j} 0.5 & -\mathrm{j} 1.1 & \mathrm{j} 0.6 \\ \mathrm{j} 0.622 & \mathrm{j} 0.6 & -\mathrm{j} 1.222 \end{array}\right]\]

Problem-2

image

Solution-2

\[Y_{\text {bus }}=\left[\begin{array}{rrrr} -\mathrm{j} 2-\mathrm{j} 2-\mathrm{jl} & .0 & \mathrm{j} 2 & \mathrm{j} 1 \\ 0 & -\mathrm{j} 2-\mathrm{j} 4 & 0 & \mathrm{j} 2 \\ \mathrm{j} 2 & 0 & -\mathrm{j} 2-\mathrm{j} 2-\mathrm{j} 5 & \mathrm{j} 5 \\ \mathrm{j} 1 & \mathrm{j} 2 & \mathrm{j} 5 & -\mathrm{j} 1-\mathrm{j} 5-\mathrm{j} 2-\mathrm{j} 1 \end{array}\right]\] \[\therefore Y_{\text {bus }}=\left[\begin{array}{cccr} -\mathrm{j} 5 & 0 & \mathrm{j} 2 & \mathrm{j} 1 \\ 0 & -\mathrm{j} 6 & 0 & \mathrm{j} 2 \\ \mathrm{j} 2 & 0 & -\mathrm{j} 9 & \mathrm{j} 5 \\ \mathrm{j} 1 & \mathrm{j} 2 & \mathrm{j} 5 & -\mathrm{j} 9 \end{array}\right]\]

\[Y_{j k, n e w}=Y_{j k}-\frac{Y_{j n} Y_{n k}}{Y_{n n}} \text { where } n=4 ; j=1,2,3 \text { and } k=1,2,3\]

The reduced bus admittance matrix after eliminating bus- 3 is given by, \[\mathbf{Y}_{\text {bus }}=\left[\begin{array}{ccc} -\mathrm{j} 4.556 & 0 & \mathrm{j} 2.111 \\ 0 & -\mathrm{j} 6 & \mathrm{j} 2 \\ \mathrm{j} 2.111 & \mathrm{j} 2 & -\mathrm{j} 6.222 \end{array}\right]\]