Tuned Power Lines

Demonstrative Video


\[\begin{aligned} \gamma & =\sqrt{yz} =\sqrt{j\omega C\left(r+j\omega L\right)}\\ \alpha+j\beta & =j\omega\sqrt{LC}\left(1-j\dfrac{r}{\omega L}\right)^{1/2}\\ & =j\omega\sqrt{LC}\left(1-j\dfrac{r}{2\omega L}\right) \end{aligned}\] \[\begin{aligned} \alpha & \simeq\dfrac{r}{2}\sqrt{\dfrac{C}{L}}\\ \beta & \simeq\omega\sqrt{LC} \end{aligned}\]

\[\begin{aligned} L & =\dfrac{\mu_{0}}{2\pi}ln\dfrac{D}{r^{'}}\\ C & =\dfrac{2\pi\varepsilon_{0}}{ln\left(D/r\right)}\\ v & =\dfrac{1}{\sqrt{LC}}=\dfrac{1}{\sqrt{\mu_{0}\varepsilon_{0}}}\\ & =\mbox{velocity of light} \end{aligned}\]


Tuned Power Lines

\[\begin{aligned} \gamma & =\sqrt{yz}=j\omega\sqrt{LC}\\ \Longrightarrow cosh\left(\gamma l\right) & =cosh\left(j\omega l\sqrt{LC}\right)=cos\left(\omega l\sqrt{LC}\right)\\ \Longrightarrow sinh\left(\gamma l\right) & =sinh\left(j\omega l\sqrt{LC}\right)=jsin\left(\omega l\sqrt{LC}\right) \end{aligned}\]

On simplification, \[\left[\begin{array}{c} V_{S}\\ I_{S} \end{array}\right]=\left[\begin{array}{cc} cos\left(\omega l\sqrt{LC}\right) & jZ_{c}sin\left(\omega l\sqrt{LC}\right)\\ \dfrac{j}{Z_{c}}sin\left(\omega l\sqrt{LC}\right) & cos\left(\omega l\sqrt{LC}\right) \end{array}\right]\left[\begin{array}{c} V_{R}\\ I_{R} \end{array}\right]\] Now if, \(\omega l\sqrt{LC} =n\pi,~n=1,2,3\cdots\) \[\begin{aligned} |V_{S}| & =|V_{R}|\\ |I_{S}| & =|I_{R}| \end{aligned}\]

For 50 Hz, the length of line for tuning is \[l=\dfrac{n\pi}{2\pi f\sqrt{LC}}\] Since, \(1/\sqrt{LC}\simeq\vartheta,\) the velocity of light \[\begin{aligned} l & =\dfrac{1}{2}\left(n\lambda\right)=\dfrac{1}{2}\lambda,\lambda,\dfrac{3}{2}\lambda,\cdots\\ & =3000~km,~6000~km,\cdots \end{aligned}\]