Symmetrical Components in Power Systems

Demonstrative Video


Symmetrical Components & Sequence Networks


Symmetrical Components

Three symmetrical components:

A balanced three-phase system with the same phase sequence as the original sequence

A balanced three-phase system with the opposite phase sequence as the original sequence

Three phasors that are equal in magnitude and phase

image


image


image

image

image


Symmetrical Component Transformation

let us first define the \(\alpha\)-operator for which the following relations holds \[\begin{aligned} \alpha & =e^{j120^{0}}=-\dfrac{1}{2}+j\dfrac{\sqrt{3}}{2}\\ \alpha^{2} & =e^{j240^{0}}=-\dfrac{1}{2}-j\dfrac{\sqrt{3}}{2}=\alpha^{*}\\ \alpha^{3} & =1\\ \alpha^{4} & =\alpha\\ \alpha^{5} & =\alpha^{2}~\text{and so on} \end{aligned}\] Note that we have \[\boxed{1+\alpha+\alpha^{2}=0}\]

Using the \(\alpha\)-operator we can write \[\begin{aligned} V_{b1} & =\alpha^{2}V_{a1} \quad V_{c1}=\alpha V_{a1}\\ V_{b2} & =\alpha V_{a2} \quad V_{c2}=\alpha^{2}V_{a2} \end{aligned}\] Finally, we get \[\begin{aligned} V_{a0} & =V_{b0}=V_{c0}\\ V_{a} & =V_{a0}+V_{a1}+V_{a2}\\ V_{b} & =V_{a0}+\alpha^{2}V_{a1}+\alpha V_{a2}=V_{b0}+V_{b1}+V_{b2}\\ V_{c} & =V_{a0}+\alpha V_{a1}+\alpha^{2}V_{a2}=V_{c0}+V_{c1}+V_{c2} \end{aligned}\]

Therefore, \[\begin{aligned} \left[\begin{array}{c} V_{a}\\ V_{b}\\ V_{c} \end{array}\right] & =\left[\begin{array}{ccc} 1 & 1 & 1\\ 1 & \alpha^{2} & \alpha\\ 1 & \alpha & \alpha^{2} \end{array}\right]\left[\begin{array}{c} V_{a0}\\ V_{a1}\\ V_{a2} \end{array}\right] \end{aligned}\] The symmetrical component transformation matrix is then given by \[\begin{aligned} \left[\begin{array}{c} V_{a0}\\ V_{a1}\\ V_{a2} \end{array}\right] & =\dfrac{1}{3}\left[\begin{array}{ccc} 1 & 1 & 1\\ 1 & \alpha & \alpha^{2}\\ 1 & \alpha^{2} & \alpha \end{array}\right]\left[\begin{array}{c} V_{a}\\ V_{b}\\ V_{c} \end{array}\right]\\ \Longrightarrow & V_{a012}=C\cdot V_{abc}\\ \Longrightarrow & I_{a012}=C\cdot I_{abc} \end{aligned}\] where \(C\) is the symmetrical component transformation matrix

The original phasor components can be obtained from the inverse symmetrical component transformation, i.e., \[\begin{aligned} V_{abc} & =C^{-1}V_{a012}\\ I_{abc} & =C^{-1}I_{a012} \end{aligned}\]


Real and reactive power

The three-phase power in the original unbalanced system is given by \[\begin{aligned} P_{abc}+jQ_{abc} & =V_{a}I_{a}^{*}+V_{b}I_{b}^{*}+V_{c}I_{c}^{*}=V_{abc}^{T}I_{abc}^{*}\\ & =\left(C^{-1}V_{a012}\right)^{T}\left(C^{-1}I_{a012}\right)^{*}\\ & =V_{a012}^{T}C^{-T}\left(C^{-1}\right)^{*}I_{a012}^{*} \end{aligned}\] we can deduce, \[C^{-T}\left(C^{-1}\right)^{*}=3\left[\begin{array}{ccc} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array}\right]\]

Therefore, \[P_{abc}+jQ_{abc}=3\left(V_{a0}I_{a0}^{*}+V_{a1}I_{a1}^{*}+V_{a2}I_{a2}^{*}\right)\] Thus, complex power is three times the summation of the complex power of the three phase sequences.


Some facts about Sequence Current