TL having its length less than 80 km is considered as a short transmission line.
In short transmission line capacitance is neglected because of small leakage current
Other parameters (resistance and inductance) are lumped in the transmission line.
\[\begin{aligned} I_{S} & =I_{R}\\ V_{s} & =V_{R}+I_{R}\cdot Z\\ Z & = R+jX \end{aligned}\]
\[\begin{aligned} OD^{2}&=O G^{2}+G D^{2}\\ &=(O F+F G)^{2}+(G C+C D)^{2} \end{aligned}\]
\[\begin{aligned} V_{S}^{2}&=\left(V_{r} \cos \phi_{r}+I R\right)^{2}+\left(V_{r} \sin \phi_{r}+I X\right)^{2} \\ V_{S}&=\sqrt{\left(V_{r} \cos \phi_{r}+I R\right)^{2}+\left(V_{r} \sin \phi_{r}+I X\right)^{2}} \end{aligned}\]
Power factor of the load measured at the sending end is \[\cos \phi_{s}=\frac{O G}{O D}=\frac{O F+F G}{O D}=\frac{V_{r} \cos \phi_{r}+I R}{V_{S}}\]
If \(V_r\) be the reference phasor then, \[V_{r}=V_{r}<0^{\circ}=V_{r}+j 0\]
For lagging PF \(I=I\angle-\Phi_{r}=\operatorname{Icos} \Phi_{r}-j I \sin \phi_{r}\)
For leading PF \(I=I\angle+\Phi_{r}=\operatorname{Icos} \Phi_{r}+j I \sin \phi_{r}\)
For unity PF, \(I=I\angle0^{\circ}=I+j 0^{\circ}\)
The line impedance is given by \(Z=R+j X\)
Sending end voltage is \[V_{s}=V_{r}+Z I\]
For lagging power factor, \[\begin{aligned} V_{S}=&\left(V_{r}+j 0\right)+(R+j X)\left(I \cos \phi_{r}-j \operatorname{I\sin} \phi_{r}\right) \\ &=\left(V_{r}+I \operatorname{R\cos} \phi_{r}+I X \sin \phi_{r}\right)+\left(I X \cos \phi_{r}-I R \sin \phi_{r}\right) \\ V_{S}&=\sqrt{\left[\left(V_{r}+I R \cos \phi_{r}+I X \sin \phi_{r}\right)^{2}+\left(I X \cos \phi_{r}-I R \sin \phi_{r}\right)^{2}\right]} \\ \tan \delta & = \frac{I X \cos \phi_{r}-I R \sin \phi_{r}}{V_{r}+I R \cos \phi_{r}+I X \sin \phi_{r}} \end{aligned}\]
\[\begin{aligned} I_{S} & =I_{R}\\ V_{s} & =V_{R}+I_{R}\cdot Z\\ Z & = R+jX \end{aligned}\]
$$\boxed{ \left[\begin{array}{c} V_S \\ I_S \end{array}\right]=\left[\begin{array}{ll} 1 & Z \\ 0 & 1 \end{array}\right]\left[\begin{array}{c} V_R \\ I_R \end{array}\right] }$$
Rise in \(V_R\) expressed in % of FL voltage, when FL at a specified pf is removed keeping \(V_s\) constant
At full load, \[\left|V_{R,F.L}\right|=\left|V_{r}\right|\]
At no load, \[\left|V_{R, N.L}\right|=\left|V_{S}\right|\]
$$\boxed{ \% \text { Regulation }=\frac{\left|V_{R, N L}\right|-\left|V_{R, F L}\right|}{\left|V_{R, F L}\right|} \times 100 }$$
greatest for lagging pf
least or -ve for leading pf
\[\text {Efficiency}=\frac{\text {Power delivered at the receiving end}}{\text {power delieverd at the sending end }+\text { losses}}\]