Short Transmission Lines

Demonstrative Video


Short transmission line


Equivalent Circuit of Short TL

image \[\begin{aligned} I_{S} & =I_{R}\\ V_{s} & =V_{R}+I_{R}\cdot Z\\ Z & = R+jX \end{aligned}\]


Phasor Diagram

\[\begin{aligned} OD^{2}&=O G^{2}+G D^{2}\\ &=(O F+F G)^{2}+(G C+C D)^{2} \end{aligned}\] image

\[\begin{aligned} V_{S}^{2}&=\left(V_{r} \cos \phi_{r}+I R\right)^{2}+\left(V_{r} \sin \phi_{r}+I X\right)^{2} \\ V_{S}&=\sqrt{\left(V_{r} \cos \phi_{r}+I R\right)^{2}+\left(V_{r} \sin \phi_{r}+I X\right)^{2}} \end{aligned}\]

Power factor of the load measured at the sending end is \[\cos \phi_{s}=\frac{O G}{O D}=\frac{O F+F G}{O D}=\frac{V_{r} \cos \phi_{r}+I R}{V_{S}}\] image

If \(V_r\) be the reference phasor then, \[V_{r}=V_{r}<0^{\circ}=V_{r}+j 0\]


ABCD Constants of Short TL

\[\begin{aligned} I_{S} & =I_{R}\\ V_{s} & =V_{R}+I_{R}\cdot Z\\ Z & = R+jX \end{aligned}\]

$$\boxed{ \left[\begin{array}{c} V_S \\ I_S \end{array}\right]=\left[\begin{array}{ll} 1 & Z \\ 0 & 1 \end{array}\right]\left[\begin{array}{c} V_R \\ I_R \end{array}\right] }$$


Voltage Regulation


Line Efficiency

\[\text {Efficiency}=\frac{\text {Power delivered at the receiving end}}{\text {power delieverd at the sending end }+\text { losses}}\]